NEW MILFORD PUBLIC SCHOOLS

New Milford, Connecticut

Honors Physics

July 2019

BOE Approved November 2019

New Milford Board of Education

David Lawson, Chairperson

Tammy McInerney, Vice Chairperson

Angela Chastain, Secretary

Eileen Monaghan, Assistant Secretary

Bill Dahl

Joseph Failla

Wendy Faulenbach

Brian McCauley

J.T. Schemm

Superintendent of Schools

Dr. Kerry Parker

Assistant Superintendent

Ms. Alisha DiCorpo

Authors of Course Guide

Matthew Heiss

Brad Jones

BOE Approved November 2019

New Milford's Mission Statement

The mission of the New Milford Public Schools, a collaborative partnership of students, educators, family and community, is to prepare each and every student to compete and excel in an ever-changing world, embrace challenges with vigor, respect and appreciate the worth of every human being, and contribute to society by providing effective instruction and dynamic curriculum, offering a wide range of valuable experiences, and inspiring students to pursue their dreams and aspirations.

Physics Honors

Grade 12

This course covers the topics of motion, forces, energy, sound, light, electricity, and magnetism. A significant portion of the work is in the laboratory, requiring laboratory reports to be written. A good mathematical background is required, including an understanding of Algebra principles and some geometry and trigonometry. Several projects are required, one of which will include a paper. At the honors level, this course is more rigorous, and moves at a faster pace. Additional homework is required.

Physics Honors Pacing Guide

Unit 1 Motion and Forces	Number of weeks 12
Unit 2: Conservation of Energy and Momentum	8
Unit 3: Electricity and Magnetism	10
Unit 4: Waves, Sound, Light	6
Unit 5: Heat and Thermodynamics	4

	Unit 1: Forces and Motion - Stage 1 Desir	ed Results
 HS-PS2-1 - Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration HS-PS2-4 - Use mathematical representations of 	Tree Students will be able to independently use their learning SEP-1 Asking Questions and Defining Problems SEP-3 Planning and Carrying Out Investigations SEP-4 Analyzing and Interpreting Data SEP-5 Using Mathematics and Computational Th SEP-8 Obtaining, Evaluating, and Communicating	<i>by</i> hinking g Information
Newton's Law of	Meaning	
 Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects CCSS.ELA-LITERACY.R ST11-12.3 - Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing other technical tasks; analyze the specific results based on explanations in the text 	 UNDERSTANDINGS (DCIs) Students will understand that PS2.A: Forces and Motion -Newton's second law accurately predicts changes in the motion of macroscopic objects. (HS-PS2-1) PS2.B: Types of Interactions -Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. (HS-PS2-4) 	 ESSENTIAL QUESTIONS Students will keep considering How can one explain and predict interactions between objects and within systems of objects? Why do objects keep moving and what causes objects' motions to change? Why are some materials attracted to each other while others are not? How would modern life be different if certain physical quantities were not conserved?

٠	CCSS.ELA-LITERACY.R		
	ST11-12.4 - Determine		
	the meaning of symbols,		
	key terms, and other	Acq	uisition
	domain-specific words	Students will know	Students will be skilled at
	and phrases as they are		
	used in a specific scientific	 Objects continue to move at a constant 	 Interpret motion plots for both vertical and
	or technical context	speed or stay at rest when no net force	horizontal motion of a projectile
	related to grades 11-12	is applied	 Determine the final state of a projectile's
	texts and topics	 Objects change their motion when a 	kinematic quantities if given the initial
٠	CCSS.MATH.CONTENT.	net force is applied.	state
	HSN.Q.A.1 - Use units as	 Freely falling bodies undergo constant 	 Describe how the Newton (the unit) is
	a way to understand	acceleration.	defined
	problems and to guide the	 The horizontal and vertical 	 Distinguish between mass and force
	solution of multi-step	components of motion of a projectile	 Calculate the weight of an object if given
	problems; choose and	are independent of one another.	its mass (or mass if given weight)
	interpret units.	 Projectiles follow parabolic trajectories. 	 Determine the magnitude and direction of
•	CCSS.MATH.CONTENT.	 Newton's second law accurately 	gravitational forces between two objects
	HSN.VM.A.1- Recognize	predicts changes in the motion of	 Determine the magnitude and direction of
	vector quantities as	macroscopic objects. (HS-PS2-1)	frictional forces
	having both magnitude	 Forces at a distance are explained by 	• Categorize a force as a contact force or a
	and direction. Represent	fields (gravitational, electric, and	field force acting at a distance
	vector quantities by	magnetic) permeating space that can	 Categorize a force as a gravitational
	directed line segments,	transfer energy through space.	force, normal force, force of tension, drag
	and use appropriate	(HS-PS2-4)	force, force of friction
	symbols for vectors and	 Free body diagrams are used to model 	 Differentiate when a problem can be
	their magnitudes	forces acting on a single object.	modeled with an object alone or when a
٠	CCSS.MATH.CONTENT.	 Forces occur in equal and opposite 	system of objects has to be created
	HSN.VM.A.3-Solve	pairs.	 Apply constant acceleration kinematics
	problems involving		equation in order to solve various
	velocity and other		one-dimensional and two-dimensional
	quantities that can be		motion problems.
	represented by vectors.		 Calculate resultant vectors using
			algebraic methods.
			 Evaluate forces as acting within a system
			or on the system as a whole

 Draw free free body diagrams in order to determine the magnitude and direction of the net force acting on an object or system in order to apply Newton's 2nd law Apply Newton's 1st and 3rd laws to determine qualitative and quantitative answers to different physical configurations Evaluate a quantitative answer as being within or outside a reasonable expectation Draw a Newton's 3rd law diagram showing all force pairs Create experiments that reveal the relationship between acceleration and force as well as the relationship between
acceleration and the mass of a system

Unit 1: Forces and Motion - Stage 2 – Evidence		
Code	Evaluative Criteria	Assessment Evidence
A, M, T	Lab report	PERFORMANCE TASK(S):
		Students will show that they really understand evidence of the acceleration due
		to gravity and Newton's second law.
		Cool. To determine the cooleration of any ity and evolute the
		Goal: To determine the acceleration of gravity and evaluate the
		accuracy of different measurement techniques.
		Role: You are a test engineer.
		Audience: Your supervisor @ United Technologies, Pratt and Whitney, Middletown,CT
		Situation: Your supervisor wants you to evaluate different lab equipment by measuring one of the most well-known physical constants.
		Product or Performance: You will need to
		determine the acceleration of gravity using a variety of methods
		and graph your results. You will then need to evaluate the accuracy
		of those methods by comparing your work with the accepted value
		for g.
		Standards for Success: Rubric.
OTHER EVIDENCE	: Students will show they have achieved	Stage 1 goals by
	Lab Departs	
A,IVI,I		
МТ	Questioning of students	
,.		

A,T	Practice problems	
A,M	Summative Assessments	

	Unit 1: Forces and Motion - Stage 3 – Learning Plan		
Code	Pre-Assessme KWL Charts Brainstorming at the beginning of a unit mind / concept mapping Formal pre-assessment to match the post assessment - optional	ent	
Code	Summary of Key Learning Events and Instruction Student success at transfer meaning and acquisition depends on	Progress Monitoring	
Μ	Graph Matching – Vernier Lab, Honors version: Use a motion detector to duplicate graphs of motion. H, E, E2	 Quizzes on content Lab report write ups 	
M/T	Walk, Jog, Run Lab, Honors version: Graph and analyze data from students walking, jogging, and running down the hallway. H, R, E2	Questions on activitiesQuestioning for comprehension	
A/M	LAB: Modern Galileo and Free Fall – Prove It!, Honors version: Determine gravitational acceleration with a variety of labs. H, E2	 End of unit assessment/ post-test 	
М	End of Unit test: Summative assessment. E2		
M/T	Shoot for your Grade Lab, Honors version: Demonstrate mastery of projectile motion. H, R, E2		
М	Inertia Smorgasbord wkst/Activity: Experiment with and explain inertia phenomena. H, E, T		
M/T	Newton's 2nd Law Lab (Vernier Lab): Analyze and interpret graphs of forces to derive mechanics equation. H, E, T		
A/M	The "Mu" of Your shoe, Honors version: Analyze data and calculate coefficient of friction. H, E2, T		
A/M	3 subunit exams and occasional quizzes: Summative assessments. E2		
М	WebAssign - online homework platform, requires application and synthesis of physics concepts		

BOE Approved November 2019

UbD Template 2.0

Unit 2:	Conservation of Energy and Momentum - Sta	age 1 Desired Results
ESTABLISHED GOALS • HS-PS2-2 - Use	Tro	ansfer
 mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system HS-PS2-3 - Apply scientific and engineering ideas to design, evaluate, 	Students will be able to independently use their learning SEP-2 Developing and Using Models SEP-3 Planning and Carrying Out Investigations SEP-4 Analyzing and Interpreting Data SEP-5 Using Mathematics and Computational Thinking SEP-6 Constructing Explanations and Designing Solutions SEP-8 Obtaining, Evaluating, and Communicating Inform	<i>by</i> s nation
and refine a device that	Me	eaning
 minimizes the force on a macroscopic object during a collision HS-PS3-1 - Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known HS-PS3-2 - Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy 	 UNDERSTANDINGS (DCIs) Students will understand that PS2.A Forces and Motion Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. (HS-PS2-2) If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. (HS-PS2-2),(HS-PS2-3) PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and 	 ESSENTIAL QUESTIONS Students will keep considering How can one explain and predict interactions between objects and within systems of objects? Why do objects keep moving and what causes objects' motions to change? What is done to make collisions safer and why do these methods work? What is energy and how is it transferred and conserved? How would modern life be different if certain physical quantities were not conserved? How can applied forces affect the energy of an object or system? How is energy used to improve the quality of our lives?

associated with the motions of particles (objects) and energy associated with the relative position of particles (objects)

- HS-ETS1-3 Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts
- CCSS.ELA-LITERACY.R ST11-12.3 - Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing other technical tasks; analyze the specific results based on explanations in the text
- CCSS.ELA-LITERACY.R ST11-12.4 - Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context

radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HS-PS3-1),(HS-PS3-2)

- At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. (HS-PS3-2) (HS-PS3-3)
- These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between particles). This last concept includes radiation, a phenomenon in which energy stored in fields moves across space. (HS-PS3-2)

related to grades 11-12 texts and topics	 PS3.B: Conservation of Energy and Energy Transfer Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. (HS-PS3-1) Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. (HS-PS3-1),(HS-PS3-4) Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. (HS-PS3-1) The availability of energy limits what can occur in any system. (HS-PS3-1) 	
	Acq	uisition
	Students will know	Students will be skilled at
	• Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. (HS-PS2-2)	 Calculate the amount of work performed in a process and indicate if it is positive or negative

- Work is a transfer of energy between systems.
- The total momentum and energy of a system is conserved.
- An unbalanced force on an object produces a change in its momentum.
- Energy is a quantitative property of a system that depends on the motion and interactions of matter within that system. (HS-PS3-2)
- At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. (HSPS3-2) (HS-PS3-3)
- In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between particles). (HS-PS3-2)
- Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems or converted to less useful forms (e.g thermal energy). (HS-PS3-4)
- Kinetic energy of a system depends on mass and speed.
- The availability of energy limits what can occur in any system. (HS-PS3-1)
- Power is the rate at which energy is transformed.

- Determine the gravitational potential energy of an object based on its position in a gravitational field.
- Determine the kinetic energy of an object or system.
- Apply energy conservation in order to solve problems for various quantities (e.g. speed, height of object)
- Calculate the momentum of an object or system.
- Classify collisions between objects or systems as perfectly inelastic or elastic.
- Determine if the kinetic energy of a system is conserved during a collision.
- Apply the impulse-momentum theorem in order to solve problems.
- Apply the work-energy theorem in order to solve problems.
- Evaluate collision scenarios and offer ways to decrease or increase impact force depending for each situation.

	Unit 2: Conservation of Energy	and Momentum - Stage 2 – Evidence
Code	Evaluative Criteria	Assessment Evidence
M/T	Schoolwide rubric	PERFORMANCE TASK(S):
		Goal: The challenge is to design and
		create a small lightweight container to
		mail a single loose Pringle ^(R) .
		Role: You are a packaging engineer.
		Audience: Your boss, the head of
		research and design ak Kellogg's Foods.
		Situation: Your boss wants to cut costs on shipping while preserving the integrity of the product.
		Product or Performance: You will need to
		design a package that doesn't use
		traditional packing materials such that '
		the package has the lowest possible
		weight is small but still meets minimum
		USPS requirements
		Standards for Success: Your work will be
		judged by the size and weight of the
		package and condition of the Pringle ^(R) after it has been
		delivered according to a rubric.
Other Evidence		
A,M,T	Lab Reports	
M,T	Questioning of students	

A,T	Practice problems	
A,M	Summative Assessments	

Unit 2: Conservation of Energy and Momentum - Stage 3 – Learning Plan		
	Pre-Assessment	
	KWL Charts Brainstorming at the beginning of a unit mind / concept mapping Formal pre-assessment to match the post assessment - optional	
Code	Summary of Key Learning Events and Instruction Student success at transfer meaning and acquisition depends on	Progress Monitoring
A/T	Vernier Lab: Energy of a Tossed Ball: Analyze and calculate transfers of energy W , E2	Quizzes on content
M/T	 "Stairmaster" Power Lab, Honors version: Calculate human work and power outputs H, E, R, E2, T Lab report write ups Questions on activities 	
M/T	Vernier Lab: Conservation of Momentum: Predict and explain conservation of momentum W, E, R, E, O	Questioning for comprehensionEnd of unit assessment/ post-test
A/M	2 subunit exams and occasional quizzes: Summative assessment E2	

UbD Template 2.0

Unit 3: Electric and Magnetic Phenomena - Stage 1 Desired Results			
ESTABLISHED GOALS	Tr	ansfer	
 HS-PS2-5 - Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current HS-PS2-4 - Use mathematical 	Students will be able to independently use their learning SEP-2 Developing and Using Models SEP-3 Planning and Carrying Out Investigations SEP-4 Analyzing and Interpreting Data SEP-5 Using Mathematics and Computational Thinking	by	
	Meaning		
 Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects HS-PS3-3 - Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy HS-PS3-5 - Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the 	 UNDERSTANDINGS (DCIs) Students will understand that PS2.B Types of Interactions Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-5) Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (HS-PS2-6),(secondary to HS-PS1-1),(secondary to HS-PS1-3) PS3.A Definitions of Energy "Electrical energy" may mean energy stored in a battery or energy 	 ESSENTIAL QUESTIONS Students will keep considering How can one explain and predict interactions between objects and within systems of objects? Why do objects keep moving and what causes objects' motions to change? Why are some materials attracted to each other while others are not? What is energy and how is it transferred and conserved? How would modern life be different if certain physical quantities were not conserved? How can applied forces affect the energy of an object or system? How is energy used to improve the quality of our lives? 	

changes in energy of the objects due to the interaction

- HS-ETS1-2 Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering
- HS-ETS1-3 Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts
- CCSS.ELA-LITERACY.R ST11-12.3 - Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing other technical tasks; analyze the specific results based on explanations in the text
- CCSS.ELA-LITERACY.R ST11-12.4 - Determine the meaning of symbols, key terms, and other

1	 transmitted by electric currents. (secondary to HS-PS2-5) PS3.C Relationship between Energy and Forces When two objects interacting through a field change relative position, the energy stored in the field is changed. (HS-PS3-5) PS2.B Types of Interactions Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. (HS-PS2-4) 	
	Acqu	uisition
	Students will know	Students will be skilled at
	 Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-5) Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (HS-PS2-6),(secondary to HS-PS1-1),(secondary to HS-PS1-3) "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary to HS-PS2-5) When two objects interacting through a field change relative position. the 	 Compare and contrast electrostatic and gravitational forces Determine the magnitude and direction of electrostatic and gravitational forces between two objects. Explain how charged particles are sources of electric fields and are subject to the forces of electric fields caused by other charges Apply Ohm's law to in order to calculate the voltage drop, the current flow and the resistance of a component within a circuit. Predict and explain why the flow of electric current is affected and distributed through parallel and series circuits

 domain-specific words and phrases as they are used in a specific scientific or technical context related to grades 11-12 texts and topics CCSS.ELA-LITERACY.R ST11-12.7 - Integrate and evaluate multiple sources of information presented in diverse formats and media in order to address a question or solve a problem CCSS.ELA-LITERACY.R ST11-12.9 - Synthesize information from a range of sources into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible 	 energy stored in the field is changed. (HS-PS3-5) Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. (HS-PS2-4) 	 Predict and explain why voltage drops across each component in parallel and series circuits. Explain why any resistive element dissipates energy by heating the resistor. Determine the equivalent resistance of series circuits and parallel circuits. Calculate the power in any resistive circuit element Explain that moving charge is the source of all magnetic fields and moving charge may be subject to forces of existing magnetic fields. Explain the conditions when changing magnetic fields can create electric current flow in conductors.
--	--	--

Unit 3: Electric and Magnetic Phenomena - Stage 2 – Evidence	
Criteria	Assessment Evidence
school wide rubric	PERFORMANCE TASK(S): Students will show that they really understand evidence of how much electric
	power is used by common household devices Background/Purpose : Every appliance in your home uses electricity when it is "on". Some appliances turn on automatically, some you turn on yourself. When the appliance is turned on, electric current flows through its wiring and supplies the energy needed by the device. Each appliance has its own power rating which can be used to calculate how much electricity is being used by that appliance. Also, your home has an electric meter which measures the amount of energy, in kilowatt hours (kWh), your family uses in a given amount of time. The electric company charges you for the number of kilowatt hours you've used based on the cost of each kilowatt hour and the delivery charges associated with getting that electricity to your home.
	Goal : You will collect appliance usage data from your home over a total of 24 hours (can be all at once, or broken into smaller periods of time based on your schedule) and use that data to calculate how much you are contributing to your household's electric bill each month. You will then reflect on your electricity consumption and come up with some strategies or steps you can take to reduce the amount of electricity you consume.
	Project Requirements: The project will contain the following components: Initial Data Collection - use the electricity usage journal sheet to record the appliances you use on a regular basis, each appliance's electricity usage (Wattage), the estimated amount of time each appliance was running and the number of Watt-hours the electric company would bill you for each appliance. Data Analysis - you will then calculate the cost of your energy usage (both energy AND delivery charges) Reflection - once you've determined how much your electricity cost, reflect on the following questions: -Of the appliances or devices you used, were any left plugged in? Do these devices still use electricity when plugged in but are turned "off"? Did you account for this "phantom energy" in your analysis? - Do you think you could reduce the amount of electricity you use? How? What
	Criteria chool wide rubric

		-Did anything surprise you in your analysis? Do you use a lot more electricity than you thought? Do you use less than you thought?
OTHER EVID	ENCE:	
A,M,T	Lab Reports	
M,T	Questioning of students	
A,T	Practice problems	
A,M	Summative Assessments	

Unit 3: Electric and Magnetic Phenomena - Stage 3 – Learning Plan		
	Pre-Assessn	ent
	<i>KWL Charts</i> <i>Brainstorming at the beginning of a unit</i> <i>mind / concept mapping</i> <i>Formal pre-assessment to match the post assessment - optional</i>	
Code	Summary of Key Learning Events and Instruction. Student success at transfer meaning and acquisition depends on	Progress Monitoring
Μ	Electrophorus Activity (Charging by Induction), Honors version: Explain methods of charging. H	 Quizzes on content Lab report write-ups
A	PhET Electrostatics Demos/ Explorations: Explain methods of charging and electron motion. T	 Questions on activities Questioning for comprehension End of unit assessment/ post-test
M/T	Van de Graff Generator Demos: Explain movement of electrons.H,T	
A/M/T	Batteries and Bulbs Intro. to Circuits Activity: Create and analyze simple circuits R,E2,T	
M/T	Ohm's Law Lab: Derive and explain Ohm's law. E,T	
A	Magnet Mania: Discovery lab. W,H,R,E2,T	
A/T	Magnetic Fields visualized, Honors version: Discovery lab. H,R,T,O	
M/T	Building a Motor and Speaker Lab, Honors version: Design and create a solution. W,H,E,E2,T,O	
A/M	Chapter Exams: Summative assessment. E2	

	Unit 4 - Waves, Sound, Light - Stage 1 Des	ired Results	
ESTABLISHED GOALS • HS-PS4-1 - Use	Tr Students will be able to independently use their learning	to	
 mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media HS-PS4-2 - Evaluate questions about the 	SEP-3 Planning and Carrying Out Investigations SEP-4 Analyzing and Interpreting Data SEP-5 Using Mathematics and Computational Thinking SEP-6 Constructing Explanations and Designing Solution SEP-7 Engaging in Argument from Evidence SEP-8 Obtaining, Evaluating, and Communicating Inform	s ation.	
advantages of using a	Meaning		
 digital transmission and storage of information HS-PS4-3 - Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other HS-PS4-4 - Evaluate the validity and reliability of claims in published 	 Students will understand that PS4.A: Wave Properties The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1) Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (HS-PS4-3). PS4.B Electromagnetic Radiation 	 Students will keep considering How can one explain and predict interactions between objects and within systems of objects? Why do objects keep moving and what causes objects' motions to change? What is energy and how is it transferred and conserved? How can applied forces affect the energy of an object or system? How are waves used to transfer energy and send and store information? How is energy used to improve the quality of our lives? How are waves used to study otherwise inaccessible objects? 	

	materials of the effects	 Electromagnetic radiation (e.g., radio, 	
	that different frequencies	microwaves, light) can be modeled as	
	of electromagnetic	a wave of changing electric and	
	radiation have when	magnetic fields or as particles called	
	absorbed by matter	photons. The wave model is useful for	
•	HS-ETS1-1 - Analyze a	explaining many features of	
	major global challenge to	electromagnetic radiation, and the	
	specify qualitative and	particle model explains other features.	
	quantitative criteria and	(HS-PS4-3)	
	constraints for solutions	 When light or longer wavelength 	
	that account for societal	electromagnetic radiation is absorbed	
	needs and wants	in matter, it is generally converted into	
•	CCSS.ELA-LITERACY.R	thermal energy (heat). Shorter	
	ST11-12.1 Cite specific	wavelength electromagnetic radiation	
	textual evidence to	(ultraviolet, X-rays, gamma rays) can	
	support analysis of	ionize atoms and cause damage to	
	science and technical	living cells. (HS-PS4-4)	
	texts, attending to		
	important distinctions the		
	author makes and to any		
	gaps or inconsistencies in		
	the account.	Acq	uisition
•	CCSS.ELA-LITERACY.R	Students will know	Students will be skilled at
	ST11-12.2 Determine the	The wavelength and frequency of a	- Classific ways as sither transverse or
	central ideas or	 The wavelength and nequency of a wave are related to one another by the 	 Classify waves as either transverse of longitudinal
	conclusions of a text;	speed of the wave, which depends on	 Contrast the type of particle vibrations
	summarize complex	the type of wave and the medium	that creates a transverse wave with the
	concepts, processes, or	through which it is passing.	type of particle vibrations that create a
	information presented in a	(HS-PS4-1)	longitudinal wave
	text by paraphrasing them	 waves can add or cancel one another as they cross, depending on their 	

in simpler but still accurate terms.

• CCSS.ELA-LITERACY.R ST11-12.3 - Follow

precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing other technical tasks; analyze the specific results based on explanations in the text

- CCSS.ELA-LITERACY.R ST11-12.4 - Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context related to grades 11-12 texts and topics
- CCSS.ELA-LITERACY.R ST11-12.7 - Integrate and evaluate multiple sources of information presented in diverse formats and media in order to address a question or solve a problem
- CCSS.ELA-LITERACY.R ST11-12.9 - Synthesize information from a range of sources into a coherent understanding of a

relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (HS-PS4-3)

- Electromagnetic radiation is a phenomenon in which energy stored in fields moves across space. (HS-PS3-2)
- Waves have characteristic behaviors such as interference, diffraction, refraction and polarization.
- Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. (HS-PS4-3)
- When longer wavelength electromagnetic radiation (e.g. light) is absorbed in matter, it is generally converted into thermal energy (heat). (HS-PS4-4)
- Shorter wavelength electromagnetic radiation (ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living cells. (HS-PS4-4)
- Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them. (HS-PS4-5)

- Identify the aspects of a wave within a graph: such as amplitude, wavelength and period
- Calculate wavelengths, frequencies and speeds of waves.
- Apply the principle of superposition to overlapping waves to determine points of constructive and destructive interference.
- Describe how the speed of sound changes when traveling through solids, liquids or gases.
- Predict the angle of reflection of light ray when it reflects off a surface
- Predict the direction a light ray will be bent as it passes from one medium to another
- Identify the type of interaction between light and matter as reflection, refraction or diffraction if given examples.
- Identify or give examples when light needs to be modeled as a wave and when it needs to be modeled as a particle
- Explain and give examples of how human society uses waves to communicate
- Explain why digital wave signals are the dominate mode of communication
- Analyze, synthesize, and evaluate information from credible sources in order to form an evidence based opinion on a current real-world issue involving electromagnetic radiation.
- Calculate the frequency, speed, and length of a harmonic for a string, open pipe or closed pipe.

nraaaaa nhanamanan ar	- Correlate an abaar ved barmania series
process, phenomenon, or	Correlate an observed narmonic series
concept, resolving	with a standing wave model of a string,
conflicting information	open pipe or closed pipe system.
when possible	
CCSS.MATH.CONTENT.	
HSN.Q.A.1 - Use units as	
a way to understand	
problems and to guide the	
solution of multi-step	
problems: choose and	
interpret units	
CCSS MATH CONTENT	
appropriate quantities for	
the purpose of descriptive	
the purpose of descriptive	
modeling.	
• CCSS.MATH.CONTENT.	
HSA.SSE.A.1-Interpret	
expressions that represent	
a quantity in terms of its	
context.	
CCSS.MATH.CONTENT.	
HSA.CED.A.4 -Rearrange	
formulas to highlight a	
quantity of interest, using	
the same reasoning as in	
solving equations	

Unit 4 - Waves, Sound, Light - Stage 2 – Evidence		
Code	Evaluative Criteria	Assessment Evidence

М, Т	Schoolwide rubric	PERFORMANCE TASK(S):
		Goal: Evaluate the validity and reliability of claims in published materials of the effects of electromagnetic radiation on materials (e.g. Effectiveness of Sunscreen, Are UV Nail Lamps Safe?).
		Role: You are a personal health advocate.
		Audience: Readers of a prominent personal health magazine
		Situation: The magazine editor would like to publish your argumentative article about the safety of one of the suggested current topics.
		Product or Performance: Write an argumentative essay in support of a position of one of the given issues using evidence from at least two opposing views.
		Standards for Success: Rubric.
	BOE A	pproved November 2019

		OTHER EVIDENCE:
A,M,T	Lab Reports	
M,T	Questioning of students	
A,T	Practice problems	
A,M	Summative Assessments	

Unit 4 - Waves, Sound, Light - Stage 3 – Learning Plan			
	Pre-Assessment KWL Charts		
	Brainstorming at the beginning of a unit mind / concept mapping		
	Formal pre-assessment to match the post assessment - optional		
Code	Summary of Key Learning Events and Instruction. Student success at transfer meaning and acquisition depends on	Progress Monitoring	
М	Speed of Sound in Air Investigation, Honors version: Calculate the speed of sound experimentally and analyze data H , R , E2	 Quizzes on content Lab report write-ups 	
М	Speed of Marshmallow lab, Honors version: Analyze data and calculate the speed of light H, T, O	 Questions on activities Questioning for comprehension 	
A/T	Measuring the angle of incidence and reflection lab: Explore the interactions of light rays at boundaries H , R , E2	 End of unit assessment/ post-test 	
A/M	2 subunit tests and occasional quizzes: Summative assessment E2		

UbD Template 2.0

	Unit 5 Heat and Thermodynamics Stage 1 D	esired Results
ESTABLISHED GOALS • HS-PS3-1 - Create a	Tr	ansfer
 HS-PS3-1 - Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known HS-PS3-2 - Develop and 	Students will be able to independently use their learning SEP-2 Developing and Using Models SEP-3 Planning and Carrying Out Investigations SEP-4 Analyzing and Interpreting Data SEP-5 Using Mathematics and Computational Thinking	to
use models to illustrate	Ме	eaning
 that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects) HS-PS3-4 - Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of a different temperature are combined within a closed system results in a more uniform 	 UNDERSTANDINGS Students will understand that PS3.A Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HS-PS3-1),(HS-PS3-2) At the macroscopic scale, energy manifests itself in multiple ways, such 	 ESSENTIAL QUESTIONS Students will keep considering How can one explain and predict interactions between objects and within systems of objects? Why do objects keep moving and what causes objects' motions to change? What is energy and how is it transferred and conserved? How would modern life be different if certain physical quantities were not conserved? How can applied forces affect the energy of an object or system? How is energy used to improve the quality of our lives?

energy distribution among as in motion, sound, light, and thermal the components in the energy. (HS-PS3-2) (HS-PS3-3) system • These relationships are better • HS-ETS1-2 - Design a understood at the microscopic scale, solution to a complex at which all of the different real-world problem by manifestations of energy can be breaking it down into smaller. more modeled as a combination of energy manageable problems associated with the motion of particles that can be solved through and energy associated with the engineering configuration (relative position of the • HS-ETS1-3 - Evaluate a particles). In some cases the relative solution to a complex position energy can be thought of as real-world problem based stored in fields (which mediate on prioritized criteria and trade-offs that account for interactions between particles). This a range of constraints, last concept includes radiation, a including cost, safety, phenomenon in which energy stored in reliability, and aesthetics, fields moves across space. as well as possible social, (HS-PS3-2) cultural. and • PS3.B Conservation of Energy and environmental impacts CCSS.ELA-LITERACY.R **Energy Transfer** ST11-12.3 - Follow • Conservation of energy means that the precisely a complex total change of energy in any system is multistep procedure when always equal to the total energy carrying out experiments, transferred into or out of the system. taking measurements, or (HS-PS3-1) performing other technical • Energy cannot be created or tasks; analyze the specific results based on destroyed, but it can be transported explanations in the text from one place to another and CCSS.ELA-LITERACY.R transferred between systems. ST11-12.4 - Determine (HS-PS3-1),(HS-PS3-4) the meaning of symbols, key terms, and other

domain-specific words	Mathematical expressions which		
 domain-specific words and phrases as they are used in a specific scientific or technical context related to grades 11-12 texts and topics CCSS.ELA-LITERACY.R ST11-12.7 - Integrate and evaluate multiple sources of information presented in diverse formats and media in order to address 	 Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. (HS-PS3-1) 		
 a question or solve a problem CCSS.ELA-LITERACY.R ST11-12.9 - Synthesize information from a range of sources into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible 	 The availability of energy limits what can occur in any system. (HS-PS3-1) Uncontrolled systems always evolve toward more stable states—that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their surrounding environment cool down). (HS-PS3-4) 		
	Acquisition		
	Students will know	Students will be skilled at	
	 Uncontrolled systems always evolve toward more stable states— that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their surrounding environment cool down), (HS-PS3-4) 	• Describe how the kinetic molecular theory connects atomic motion to macroscopic physical quantities such as work, temperature, pressure, quantity and volume	

 Temperature of an ideal gas is a measure of the average kinetic energy of its molecules. Naturally, all gases, liquids and solids expand as they are heated. Heat is energy that is transferred from one system to another by means of conduction, convection, or radiation. Specific heat is a material property tha describes the energy required to raise an object's temperature or the amount of energy released by that object as it cools. During phase transitions, heat is absorbed or released without changes in temperature (latent heat). 	 Calculate the specific heat of an unknown material by using the specific heat of water as a control. Be able to identify the modes of heat transfer as conduction, convection, or radiation if given specific examples (ex: roasting a marshmallow on the coals of a fire) Give examples of when thermal expansion has to be accounted for in engineering designs Explain the ramifications of solid state heat flow rates as a function of temperature during cooking List and explain the major ways society transfers energy into forms we use and the resulting human and global ramifications Explain how air conditioners and heat pumps work to force heat flow in the desired direction while reconciling with the laws of thermodynamics that state heat flows from the hotter to the cooler, energy is conserved and entropy is increased in a closed system
--	---

Unit 5 Heat and Thermodynamics Stage 2 – Evidence		
Code	Evaluative Criteria	Assessment Evidence
Т, М	Lab report	PERFORMANCE TASK(S): Students will show that they really understand evidence of Heat Transfer lab Role: Engineering student Audience: Engineering Supervisor, University of New Haven, West Haven, CT Format: Formal lab report Task: Explain how thermal energy can be transferred between parts of a system which are in thermal equilibrium with each other.
A,M,T	Lab Reports	
M,T	Questioning of students	
A,T	Practice problems	
A,M	Summative Assessments	

Unit 5 Heat and Thermodynamics Stage 3 – Learning Plan			
	Pre-Assessme KWL Charts Brainstorming at the beginning of a unit mind / concept mapping Formal pre-assessment to match the post assessment - optional	ent	
Code	Summary of Key Learning Events and Instruction Student success at transfer meaning and acquisition depends on	Progress Monitoring	
М, Т	Heat Transfer lab, Honors version - explore experimentally how thermal energy moves between systems H , E , R , E2 , O	 Quizzes on content Lab report write-ups 	
М, Т	Energy Skate Park Friction, Honors version - Examine the effects of thermal energy in the context of the laws of thermodynamics W , H , R , T	 Questions on activities Questioning for comprehension End of unit assessment/ post-test 	
A, M	Summative assessment E2		