Adjacent Angles

Given:

The measure of the largest angle is the sum of the two smaller angles.

$m \angle ADC = m \angle ADB + m \angle BDC$	C Substitute in the values for each
angle	
6x - 8 = 4x + 1 + 21	
6x - 8 = 4x <u>+ 1</u> <u>+ 21</u>	Combine like terms
6x - 8 = 4x + 22	Do the inverse operation to move the
<u>-4x</u> -4x	variable to the right side of the equation
2x - 8 = 22	Do the inverse operation to move the
<u>+8 +8</u>	constant to the left side of the equation
2x = 30	
2x = 30	Divide both sides by 2
2 2	2

Now that we know the value of x, substitute the value into the expression for each angle.

x = 15 m \angle ADC = (6x - 8)° = 6 (15) - 8 = 90 - 8 = 82°

m∠ ADB =
$$(4x + 1)^{\circ}$$

= 4 (15) + 1
= 60 + 1
= 61°