SETION 1: Area of Rectangles and a Triangle

To find the area of a rectangle use $\boldsymbol{A}=\boldsymbol{b} \boldsymbol{h}$ or $\boldsymbol{A}=\boldsymbol{l} \boldsymbol{w}$.
To find the area of a triangle we can use the formula: $\boldsymbol{A}=1 / 2 \boldsymbol{b} \boldsymbol{h}$

$$
\begin{aligned}
A & =l w \\
& =6 \bullet 4 \\
& =24 u^{2}
\end{aligned}
$$

You Try!

$$
\begin{aligned}
\boldsymbol{A} & =1 / 2 \boldsymbol{b} \boldsymbol{h} \\
& =(1 / 2)(20)(7.4) \\
& =74 \mathrm{~km}^{2}
\end{aligned}
$$

SETION 2: What are Complex Figures?

A Complex figure is a figure that can be divided into more than one of the basic shapes.
Some people call these figures irregular figures. Some complex figures are shapes that connect to make a bigger shape. Other complex figures are shapes inside of other shapes.

Shape 1

Shape 4
15 ft .

Answers will vary, but students may see rectangles, triangles, and trapezoids.

SETION 3: Decomposing Complex Figures

In order to find the area of a complex figure, you need to know how to find missing side lengths.
You also need to be able to decompose the figure into individual shapes.

Guided Practice

If $A B=10, F E=8, A F=6$ and $D E=7$,
find the lengths of the other sides.
$D C=\quad B C=$

If $D C=10, F E=30, A F=28$ and $B C=54$, find the lengths of the other sides.

$$
A B=\quad D E=
$$

You Try!

Sometimes there is more than one way to decompose a complex figure!
The Intermediate School is producing a play that needs a special stage built. A diagram is shown below.

- On the first diagram, divide the stage into three rectangles using two horizontal lines.
- On the second diagram, divide the stage into three rectangles using two vertical lines.
- On the third diagram, divide the stage into three rectangles using one horizontal line and one vertical line.

SETION 4: Finding the Area of Complex Figures

There is not an easy formula to find the area of complex figures. Now is the time when you really need to understand how to compose and decompose a figure.

- There are two types of complex figures: Shapes that connect

Shapes inside of shapes

- How you calculate the area depends upon what type of complex figure you have and the shapes that can be decomposed.

Shapes that Connect

Find the total area of the shape below.

Rectangle:
$\mathrm{A}=\mathrm{L} \times \mathrm{W}$
$\mathrm{A}=40 \times 30$
$\mathrm{~A}=1,200 \mathrm{ft}^{2}$
Square:
$\mathrm{A}=\mathrm{L} \times \mathrm{W}$
$\mathrm{A}=20 \times 20$
$\mathrm{~A}=400 \mathrm{ft}^{2}$

Total Area:

Shapes Inside of Shapes

Find the area of the shaded region of the shape below.

Rectangle
A = b $\cdot \mathbf{h}$
$A=12 \cdot 10$
$A=120$ in 2
Triangle
A=1/2•b•h
A $=1 / 2 \cdot 6 \cdot 4$
A=12 in ${ }^{2}$

Shaded Region: 120-12 =

Name__D_D_D__ Period:__ | Extra Practice |
| ---: |
| Answer Key |

1) The top-view of Mr. thopson's office desk is shown below. What is the area of the top of Mr. thompson's office desk?

rectangle 1
$A=L \times W$
$46 \times 24=1,104 \mathrm{in}^{2}$

2) A rectangular flower bed measures 10 m by 6 m . It has a path 2 m wide around it. Find the area of the path.

Outside rectangle: $\quad A=b \times h$

Inside rectangle: $\quad \mathrm{A}=\mathrm{b} \times \mathrm{h}$

$$
10 \times 6=60 \mathrm{~m}^{2}
$$

Shaded Path: $\quad 140-60=80 \mathrm{~m}^{2}$
3) Find the area.

4) Find the area. Triangle $\frac{1}{2} \bullet 3 \bullet 8=12$

Triangle $\frac{1}{2} \cdot 3 \cdot 8=12$ Rectangle $6 \bullet 8=48$

5) Find the area.

Triangle $\frac{1}{2} \cdot 5 \cdot 12=30$
Triangle $\frac{1}{2} \cdot 5 \cdot 12=30$
Rectangle $12 \cdot 12=144$

