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Preface 

 
Written to support Calculus for AP* Early Transcendentals, Second Edition, by John 

Rogawski and Ray Cannon, this Teacher’s Resource Binder offers both supplementary and 

complementary material. We understand a teacher's time is precious; as a result, we try to keep 

our notes succinct for ease of reference.  Our overarching goal is to be concise, practical, and easy 

to use. Hopefully it will save some time in planning classes! 

 

Regardless of a teacher's level of experience, we hope that our readers share a similar enjoyment 

of teaching and exploring calculus. We developed a number of features to help the veteran 

instructor or the first time teacher. Many teachers find different techniques effective in conveying 

the key topics in calculus. In this TRB, we made an effort to address the different approaches that 

may be employed. We make suggestions and provide guidance to those who prefer lectures and 

also supply material for instructors who prefer other approaches. We hope this resource will help 

you to try new methods in approaching a difficult topic. 

 

On the following pages we note the features in this guide and provide brief descriptions about 

how each feature should best be utilized. 

 

We would like to acknowledge the editorial staff at W. H. Freeman and Company. 
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Features 
 

Each Section includes the following information: 

 

1) Class Time - covering all of the material for the AP exams is difficult. 

• We make suggestions about how much time should be spent on each section for AB and 

BC calculus. 

• We also note how critical each section is to a student's understanding of calculus. 

 

2) Key Points - It may be difficult to discern some of the main ideas in the text. We provide 

• a streamlined list of all the important topics from each chapter. 

• concise points for quick reference. 

• a bulleted list that identifies the main ideas in each section. 

 

3) Lecture Material - In this feature, we take a more theoretical approach to the section's 

material to foster a conceptual understanding for the student. The material 

• is concise in its presentation. 

• is based on our own teaching experiences. 

• intertwines key examples and exercises from the text. 

• guides the teacher in a lecture or lecture and discussion setting. 

 

4) Discussion Topics/Class Activities - With any class, some of the more interesting topics 

require some deviation from the main concepts, and there are some common issues that 

repeatedly give students problems. These topics 

• are engaging examples from our own experience and also examples and problems from 

the text. 

• will force a student to think and reflect on the material, allowing the student to formulate a 

distinct understanding of the material at hand. 

• provide an opportunity to get outside the typical lecture. 

 

5) Suggested Problems - There a large number and variety of problems at the end of each 

section. To help the teacher identify good problems, especially those that are in the AP style, we 

provide the following: 

• a quick reference guide for homework problems. 

• suggestions about some core problems that cover a variety of topics and problem types. 

• problems that cover graphical, numerical, abstract, and algebraic genres. Often, we also 

note the difficulty, and if the problem relates to a specific topic in that particular section. 

 

6) Worksheet and Worksheet Solutions - We provide material that can be distributed in class. 

The best way to learn calculus is by doing calculus. It is very helpful, especially to struggling 

students, when the first attempt at a type of problem takes place in class, with the teacher 

available to help. Thus, we provide problems that relate directly to the material. 

• Exercises that provide additional practice to students who are having trouble with 

specific topics. 

• Exercises that provide feedback for both students and the instructor. 

 

 

Each Chapter includes the following: 

 

AP Style Questions - After talking to many AP teachers, we understand that there can never be 

enough practice and preparation for the exam. As a result, we developed multiple choice and free 

response questions that correspond with sections of Rogawski's Calculus. These can be used as 

practice quizzes or for testing material. 
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Teacher’s Resource Manual Author Team 

 
Lin McMullin has taken the lead role in developing the TRB for both the first and second 

editions of Jon Rogawski’s Calculus.  He is an author and consultant working in mathematics 

education. He taught high school mathematics, including AB and BC Calculus for 34 years. He 

has led many workshops and institutes for AP Calculus teachers in the United States and Europe. 

He served as an AP Calculus exam reader and table leader for 14 years. He is the author of 

Teaching AP Calculus, which is a resource book for teachers based on the material he teaches in 

his one-week summer institutes. 

 

Ray Cannon (Baylor University) wrote the chapter overviews that begin each chapter.  Ray has 

long been interested in the articulation between high school and college mathematics and has 

served the AP Calculus program in a variety of ways: as a Reader of the exams, as a Table 

Leader, as Exam Leader (both AB and BC0, and, finally, through four years as Chief Reader. He 

has also served on the College Board’s Test Development Committee for AP Calculus. Ray is a 

frequent consultant for the College Board, presenting at workshops and leading week-long 

summer institutes. Additionally, Ray served on Mathematical Association of America (MAA) 

committees concerned with the issue of proper placement of students in precalculus and calculus 

courses. Ray has won numerous awards for his teaching and service, including university-wide 

teaching awards from the University of North Carolina and Baylor University. He was named a 

Piper Professor in the state of Texas in 1997 and has twice been given awards by the 

Southwestern region of the College Board for outstanding contributions to the Advanced 

Placement Program. 

 

AP Question Writers for the Teacher’s Resource Binder 
John Jensen is currently the Faculty Chair in Mathematics at Rio Salado College in Tempe, 

Arizona. Before arriving at Rio Salado, he taught high school mathematics for 30 years in the 

Paradise Valley School District in Phoenix, Arizona. For 25 years, he taught Advanced Placement 

Calculus. 

John has been an AP Calculus reader and table leader for 17 years and has conducted 

over 150 workshops and institutes in the United States, Canada, Europe, and Asia. During the 

course of his career, he has received the following honors: Presidential Award for Excellence in 

Teaching Mathematics in 1987; the first Siemens Advanced Placement Award in 1998; the 

Distinguished Service Award (1998) and the Exemplar Award (2001) by the College Board; and 

the Tandy Technology (Radio Shack) Award in 1997. 

John is also a former fellow of the Woodrow Wilson Mathematics Institute at Princeton 

University and holds a National Board Adolescence and Young Adulthood Certificate in 

Mathematics. 

Haika Karr teaches AP Calculus AB and BC at Liberty Hill High School in Liberty Hill, Texas. 

Her 12 years of teaching experience include 7 years of teaching Calculus. She is currently the 

Mathematics Department Chairperson, coaches UIL Mathematics and Number Sense, and 

sponsors her school's chapter of the National Honor's Society. 

Bret Norvilitis has taught high school and middle school math for the past 16 years, the past 10 

at Orchard Park High School in Orchard Park, NY, where he is currently the department chair. He 

became a Calculus teacher five years ago. He has attended many weekend AP seminars and two 

week-long AP conferences in both AB and BC. He has taught the AB curriculum seven times and 

the BC curriculum twice. 
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Correlation to The College Board’s AP* Topic Outline 

(AB and BC) 
 

AB BC College Board Topic Outline Rogawski ET Rogawski LT 

AB BC I.  Function, Graphs, and Limits   

AB BC Analysis of graphs 1.7 1.5 

AB BC Limits of Functions (including one-sided limits) Ch. 2 Ch. 2 

AB BC  Intuitive understanding of the limiting process 2.1-2.2 2.1-2.2 

AB BC  Calculating limits using algebra 2.3, 2.5-2.6 2.3, 2.5-2.6 

AB BC  Estimating limits from graphs or tables of data 2.2, 2.6 2.2, 2.6 

AB BC Asymptotic and unbounded behavior 4.6 4.5 

AB BC 

 Understanding asymptotes in terms of graphical 

behavior 4.6 4.5 

AB BC 

 Describing asymptotic behavior in terms of 

limits involving infinity 4.6 4.5 

AB BC 

 Comparing relative magnitudes of functions and 

their rates of change 4.5 7.7 

AB BC Continuity as a property of functions 2.4 2.4 

AB BC  Intuitive understanding of continuity 2.4 2.4 

AB BC  Understanding continuity in terms of limits 2.4 2.4 

AB BC 

 Geometric understanding of graphs of 

continuous functions 2.8 2.8 

 BC Parametric, polar and vector functions 11.5 12.5 

AB BC II.  Derivatives Chs 3-4 Chs 3-4 

AB BC Concept of the derivative 3.1 3.1 

AB BC 

 Derivative presented graphically, numerically, 

and analytically 3.1, 3.3 3.1, 3.3 

AB BC 

 Derivative interpreted as an instantaneous rate 

of change 3.4 3.4 

AB BC 

 Derivative defined as the limit of the difference 

quotient 3.1 3.1 

AB BC 

 Relationship between differentiability and 

continuity  3.2 3.2 

AB BC Derivative at a point 3.1 3.1 

AB BC  Slope of a curve at a point 3.1 3.1 

AB BC 

 Tangent line to a curve at a point and local 

linear approximation 4.1 4.1 

AB BC 

 Instantaneous rate of change as the limit of 

average rate of change 3.1 3.1 

AB BC 

 Approximate rate of change from graphs and 

tables of values 3.1 3.1 

AB BC Derivative as a function 3.2 3.2 

AB BC 

 Corresponding characteristics of graphs of f and 

f' 3.2, 4.2, 4.4, 4.6 3.2, 4.2, 4.4-4.5 

AB BC 

 Relationship between the increasing and 

decreasing behavior of f and the sign of f' 4.2, 4.4, 4.6 4.2, 4.4-4.5 
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AB BC 

 The Mean Value Theorem and its geometric 

interpretation 3.9, 4.2-4.4, 4.6 4.2-4.5, 7.1, 7.3 

AB BC  Equations involving derivatives 4.4, 4.6 4.4-4.5 

AB BC Second derivatives 4.4, 4.6 4.4-4.5 

AB BC 

 Corresponding characteristics of the graphs of f, 

f',and f" 4.4, 4.6 4.4-4.5 

AB BC 

 Relationship between the concavity of f and the 

sign of f" 4.4, 4.6 4.4-4.5 

AB BC 

 Points of inflection as places where concavity 

changes 4.4, 4.6 4.4-4.5 

AB BC Applications of derivatives   

AB BC  Analysis of curves 4.3-4.4, 4.6 4.3-4.5 

 BC 

 Analysis of planar curves given in parametric 

form, polar form, and vector form 

4.6, 11.1, 11.3, 

11.5 

4.5, 12.1, 12.3, 

12.5 

AB BC 

 Optimization, both absolute (global) and relative 

(local) extrema 4.7 4.6 

AB BC 

 Modeling rates of change, including related 

rates 3.11 3.9 

AB BC 

 Use of implicit differentiation to find the 

derivative of an inverse function 3.8, 3.10 3.8, 7.2 

AB BC 

 Interpretation of the derivative as a rate of 

change in varied applied contexts 3.4 3.4 

AB BC 

 Geometric interpretation of differential 

equations via slope fields and the relationship 

between slope fields and solution curves for 

differential equations 9.3 10.2 

 BC 

 Numerical solution of differential equations 

using Euler's method 9.2 7.6 

 BC  L'Hospital's Rule 4.5, 7.6, 10.3 7.7, 8.6, 11.3 

AB BC Computation of derivatives 3.3, 3.5 3.3, 3.5 

AB BC  Knowledge of derivatives of basic functions 3.2-3.3, 3.5-3.6 3.2-3.3, 3.5-3.6 

AB BC 

 Derivative rules for sums, products, and 

quotients of functions 3.2-3.3, 3.6 3.2-3.3, 3.6 

AB BC  Chain rule and implicit differentiation 3.7, 3.10 3.7-3.8 

 BC 

 Derivatives of parametric, polar, and vector 

functions 11.1, 11.3, 11.7 12.1, 12.3, 12.7 

AB BC III.  Integrals   

AB BC 
Interpretations and properties of definite 

integrals 5.1-5.2 5.1-5.2 

AB BC  Definite integral as a limit of Riemann sums 5.2 5.2 

AB BC 

 Definite integral of the rate of change of a 

quantity over an interval interpreted as the 

change of the quantity over the interval 5.5 5.5 

AB BC  Basic properties of definite integrals 5.2 5.2 

AB BC Applications of integrals 

6.1-6.3, 8.1, 

11.2, 11.4 

6.1-6.3, 9.1, 

12.2, 12.4 

AB BC Fundamental Theorem of Calculus 5.7 7.1, 7.3, 7.8 
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AB BC 

 Use of the Fundamental Theorem to evaluate 

definite integrals 5.3-5.4 5.3-5.4 

AB BC 

 Use of the Fundamental Theorem to represent a 

particular antiderivative 5.3-5.4 5.3-5.4 

AB BC Techniques of antidifferentiation 3.5, 5.7 3.5, 7.1, 7.3, 7.8 

AB BC 

 Antiderivatives following directly from 

derivatives of basic functions 4.9, 5.3-5.4, 5.6 4.8, 5.3-5.4, 5.6 

AB BC  Antiderivatives by substitution of variables 5.6 5.6 

 BC 

 Antiderivatives by substitution of variables, 

parts, and simple partial fractions 5.6, 7.1, 7.5 5.6, 8.1, 8.5 

 BC  Improper integrals as limits of definite integrals 7.6 8.6 

AB BC Applications of antidifferentiation 4.8 4.7 

AB BC 

 Finding specific antiderivatives using initial 

conditions 4.9, 9.1, 9.3 4.8, 10.1-10.2 

AB BC 

 Solving separable differential equations and 

using them in modeling 5.8, 9.1, 9.3 7.4, 10.1-10.2 

 BC 

 Solving logistic differential equations and using 

them in modeling 9.4 10.3 

AB BC Numerical approximations to definite integrals 7.8 8.8 

AB BC 

 Use of Riemann sums and trapezoidal sums to 

approximate definite integrals of functions 8.1 9.1 

 BC 
IV. Polynomial approximations to  

definite integrals   

 BC Concept of series 10.1-10.2 11.1-11.2 

 BC Series of constants 10.2-10.5 11.2-11.5 

 BC 

 Motivating examples, including decimal 

expansion 10.2-10.3 11.2-11.3 

 BC  Geometric series with applications 10.2-10.3 11.2-11.3 

 BC  The harmonic series 10.2-10.3 11.2-11.3 

 BC  Alternating series with error bound 10.4 11.4 

 BC 

 Terms of series as areas of rectangles and their 

relationship to improper integrals 10.3 11.3 

 BC  The ratio test for convergence and divergence 10.5 11.5 

 BC 

 Comparing series to test for convergence or 

divergence 10.3, 10.5 11.3, 11.5 

 BC Taylor series 10.6-10.7 11.6-11.7 

 BC 

 Taylor polynomial approximation with 

graphical demonstration of convergence 8.4, 10.6-10.7 9.4, 11.6-11.7 

 BC 

 Maclaurin series and the general Taylor series 

centered at x = a 8.4, 10.6-10.7 9.4, 11.6-11.7 

 BC 

 Maclaurin series for the functions ex, sin x, cos 

x and 1/1-x 8.4, 10.6-10.7 9.4, 11.6-11.7 

 BC 

 Formal manipulation of Taylor series and 

shortcuts to computing Taylor series 10.6-10.7 11.6-11.7 

 BC  Functions defined by power series 10.6-10.7 11.6-11.7 
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 BC 

 Radius and interval of convergence of power 

series 10.6-10.7 11.6-11.7 

 BC  Lagrange error bound for Taylor polynomials 8.4 9.4 
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Class Pacing Guide 

Recommended time allocation per section. 
 

 

Chapter 1: Precalculus Review 
The material in this chapter is a quick review of precalculus material. This chapter can be greatly 

shortened or omitted in the AP Calculus course. These time suggestions are for those who need to 

cover the material for the first time in the calculus course. 

Section AB time in 40-minute 

periods 

BC time in 40-minute 

periods 

AP course description 

1.1 Real Numbers, 

Functions, and Graphs 

0-1 0-1 See prerequisites 

1.2 Linear and 

Quadratic Functions 

0-1 0-1 See prerequisites 

1.3 The Basic Classes 

of Functions 

0-1 0-1 See prerequisites 

1.4 Trigonometric 

Functions 

0-2 0-1 See prerequisites 

1.5 Inverse 

Functions 

0-2 0-1 See prerequisites 

1.6 Exponential and 

Logarithmic Functions 

0-2 0-1 See prerequisites 

1.7 Technology: 

Calculators and 

Computers 

0-2 0-1 1-1 

Catch-up, review, and 

testing 

0-2 0-1  

Total 0-13 0-8  
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Chapter 2: Limits 
The material in this chapter is often taught in precalculus courses. This saves time in the calculus 

course. If this is your situation, then the material in this chapter can be greatly shortened or omitted 

in the AP Calculus course. These time suggestions are for those who need to cover the material for 

the first time in the calculus course. 

Section AB time in 40-minute 

periods 

BC time in 40-minute 

periods 

AP Course 

Description 

2.1 Limits, Rates of 

Change, Tangent 

Lines 

1 1 I-2-a 

2.2 Limits: A 

Numerical and 

Graphical Approach 

2 2 1-2-a, c 

2.3 Basic Limit Laws 2 1 I-2-b 

2.4 Limits and 

Continuity 

2 1-2 I-4-a,b 

2.5 Evaluating Limits 

Algebraically 

2 1 I-2-b 

2.6 Trigonometric 

Limits 

1 1 I-2-b, c 

2.7 Limits at Infinity 

 

1 1 I-2-a, b 

2.8 Intermediate Value 

Theorem 

 

1 1-2 I-2-b, c 

Catch-up, review, and 

testing 

3 2.5  

Total 15 10-13  

 

The bisection method is not tested on either the AB or BC exams. 
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Chapter 3: Differentiation 

Section AB time in 40-minute 

periods 

BC time in 40-minute 

periods 

AP Course 

Description 

3.1 Definition of 

the Derivative 

2 1-2 II-l-a,c, II-2a,c,d 

3.2 The Derivative 

as a Function 

2 1-2 II-l-a,d;n-2a,b,d;U-3-

aII-6 a, b 

3.3 The Product 

and Quotient 

Rules 

2 1 II-1-a; n-6-a,b 

3.4 Rates of Change 1 1 n-l-b;II-5-f 

3.5 Higher 

Derivatives 

1 1 II-6-a; ni-4 

3.6 Trigonometric 

Functions 

1 1 II-6-a, b 

3.7 The Chain Rule 1 1 II-6-c 

3.8 Derivatives 

of Inverse 

Functions 

2 1-2 II-6 

3.9 Derivatives of 

Exponential and 

Logarithmic Functions 

1 1 II-6 

3.10 Implicit 

Differentiation 

2 1-2 H-5-e; II-6-c 

3.11 Related Rates 2 2 II-5-d 

Catch-up, review, and 

testing 

3 3  

Total 20 16-20  
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Chapter 4: Applications of the Derivative 

Section AB time in 40-minute 

periods 

BC time in 40-minute 

periods 

AP Course 

Description 

4.1 Linear 

Approximations and 

Applications 

2 1 H-2-b 

4.2 Extreme Values 2 2 II-3-a,b,c; 

II-4-a,b,c 

4.3 The Mean Value 

Theorem and 

Monotonicity 

2 2 H-3-c; II-5-a 

4.4 The Shape of a 

Graph 

2 2 II-3-a,b,c; 

II-4-a,b,c; 

II-5-a 

4.5 L’Hôpital’s 

 Rule 

0 1 II-5-i 

4.6 Graph 

Sketching and 

Asymptotes* 

3 2-3 I-3-a,b; 

II-3-a,b,c; 

II-4-a,b,c; II-5-a,c 

4.7 Applied 

Optimization 

2 2 II-5-c 

4.8 Newton's Method Omit Omit Not testedon either the 

AB or BC exams 

4.9 Antiderivatives** 3 2 III-5-a; III-4-a 

Catch-up, review, and 

testing 

3 3  

Total 19 15-18  

* 4.5 Asymptotes are often covered thoroughly in precalculus courses. If your students have 

studied this already, then this material may be quickly reviewed. Otherwise a third full period will 

be needed to teach about asymptotes. 

 

** 4.8 Antiderivatives and initial value problems may be considered here, or with the material in 

Chapter 5. If placed after 5.4 (FTC), student will have a reason to need to know about 

antiderivatives. 
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Chapter 5: The Integral 

Section AB time in 40-minute 

periods 

BC time in 40-minute 

periods 

AP Course 

Description 

5.l Limits: 

Approximating and 

Computing Area 

2 2 III-i-a 

5.2 The Definite 

Integral 

2 1 III-l-a,b,d 

5.3 Fundamental 

Theorem of Calculus, 

Part I 

2 1 III-3-a, b; ni-4-a 

5.4 Fundamental 

Theorem of Calculus, 

Part II 

2 2 III-3-a, b; III-4-a 

5.5 Net or Total 

Change as the Integral 

of a Rate 

2 1 III-l-c 

5.6 Substitution 

Method 

2 2 III-4-a, b 

5.7 Further 

Transcendental 

Functions 

1 1 III-3, III-4 

5.8 Exponential 

Growth and 

Decay 

2 2 III-5-b 

Catch-up, review, and 

testing 

3 3  

Total 19 15  
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Chapter 6: Applications of the Integral 

Section AB time in 40-minute 

periods 

BC time in 40-minute 

periods 

AP Course 

Description 

6.1 Area Between 

Two Curves 

2 1 III-2 

6.2 Setting Up 

Integrals: 

Volume, 

Density, 

Average Value 

3 2 III-2 

6.3 Volumes of 

Revolution 

 

3 2-3 ra-2 

6.4 The Method of 

Cylindrical Shells 

2: Optional 2: Optional Not tested on either 

the AB or BC exams 

6.5 Work and Energy 0 0 Not tested on either 

the AB or BC exams 

Catch-up, review, and 

testing 

3 3  

Total 12 8-9  
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Chapter 7: Techniques of Integration 

Section AB time in 40-
minute periods 

BC time in 40-
minute periods 

AP Course 
Description 

7.1 Integration by 
Parts 

0 1 III-4-b 
BC only 

7.2  
Trigonometric 
Integrals 

0 0 Not tested on either 
the AB or BC 

exams 

7.3 Trigonometric 
Substitution 

0 0 Not tested on either 
the AB or BC 

exams 

7.4 Integrals of 
Hyperbolic 
Functions and 
Inverse 
Hyperbolic 
Functions 

0 0 Not tested on either 
the AB or BC 

exams 

7.5 The Method of 
Partial Fractions 

0 1-2 III-4-b 
BC only 

7.6 Improper Integrals 0 1-2 II-5-I; 
III-4-c 

BC only 

7.8 Numerical 

Integration 

2 1 III-6 

Catch-up, review, 
and testing 

1 3  

Total 3 7-9  
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Chapter 8: Further Applications of Integration and Taylor Polynomials 

Section AB time in 40 
minute periods 

BC time in 40 
minute Periods 

AP Course 
Description 

8.1 Arc Length 
and Surface Area 

0 1 III-2 

BC only 

8.2 Fluid 
Pressure and 
Force 
 

0 0 Not tested on either 

AB or BC exams 

8.3 Center of 
Mass 

0 0 Not tested on either 

AB or BC exams 

8.4 Taylor 
Polynomials 

0 2-3 IV-a,b,c,g 
BC Only 

Catch up, Review and 

testing 

0 2  

Total 0 5-6  
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Chapter 9: Introduction to Differential Equations 

Section AB time in 40-
minute periods 

BC time in 40-
minute periods 

AP Course 
Description 

9.1 Solving 
Differential 
Equations 

3 2 III-5-a,b 

9.2 Models 
involving 

 y k y b    

0 0 Not tested on either 

the AB or BC exams 

9.3 Graphical 
and Numerical 
Methods 

3 2 II-5-g 

III-5-a,b 

9.4 The Logistic 
Equation 

0 1-2 BC only 
III-5-c 

9.5 First-Order Linear 

Equations 

0 0 Not tested on either 
the AB or BC 

exams 

Catch-up, review, 
and testing 

2 2  

Total 8 7-8  
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Chapter 10: Infinite Series 

BC only (Not tested on the AB Exam) 

Section AB time in 40-
minute periods 

BC time in 40-
minute periods 

AP Course 

Description 

10.1 Sequences 0 2 BC only 

IV-i 

10.2 Summing 
an Infinite Series 

0 2 BC only 

IV-i 
IV-2-a,b,c 

10.3 Convergence of 
a Series with Positive 
Terms 

0 2 BC only; 
II-5-i 

IV-2-a,b,c,e,g 

10.4 Absolute and 

Conditional 
Convergence 

0 1 BC only 
IV-d 

10.5 The Ratio 
and Root Tests 

0 1 BC only 
IV-2-f,g 

10.6 Power Series 0 2 BC only IV-3-
a,b,c,d,e,f 

10.7 Taylor Series 0 2 BC only IV-3 
a,b,c,d,e,f 

Catch-up, review, 
and testing 

0 3-4  

Total 0 15-16  
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Chapter 11:  

BC only (Not tested on the AB Exam) 

Section AB time in 40-

minute periods 

BC time in 40-

minute periods 

AP Course 

Description 

11.1 Parametric 

Equations 

0 1* BC only 

II-5-b  

II-6-d 

11.2 Arc Length 

and Speed 

0 1 BC only 

III-2 

11.3 Polar 

Coordinates 

0 1-2** BC only 

II-5-b II-

6-d 

11.4 Area and 

Arc Length in 

Polar Coordinates 

0 1 BC only 

III-2 

11.5 Vectors In the 

Plane 

0 2 Not tested on either 

the AB or BC 

exams 

11.6 Dot Product and 

the Angle Between 

Two Vectors 

0 0 Not tested on either 

the AB or BC 

exams 

11-7 Calculus of 

Vector-Valued 

Functions 

0 2  

Catch-up, review, 

and testing 

0 2  

Total 0 10-11  
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Chapter AB time in 40-minute periods BC time in 40-minute periods 

1 Optional 

0-13 
 

Optional 

0-8 

2 14 10-11 

3 20 16-20 

4 19 15 - 18 

5 19 15 

6 11 (13) 8 (11) 

7 3 7-9 

8 0 15-16 

9 8 7-8 

10 0 15-16 

11 0 10-11 

   

   

APExam 

Review 

20 15 

Total 130  118 - 142 
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1. Pre-Calculus Review

1.1. Real Numbers, Functions, and Graphs.

Class Time AB and BC, 0–1 period. Essential.

The material in this section is a review of precalculus material. This section can be
greatly shortened or omitted in the AP Calculus course. The items listed below are
important for calculus and your students should understand them.

Key Points

• The absolute value is defined by |a| =
{

−a if a < 0
a if a ≥ 0

.

• Triangle inequality: |a + b| ≤ |a| + |b| with equality if and only if a and b have
the same sign.

• There are four types of intervals with endpoints a and b:

(a, b), [a, b], [a, b), (a, b]

• Open and closed intervals can be expressed with inequalities:

(a, b) = {x : a < x < b}, [a, b] = {x : a ≤ x ≤ b}
or

(a, b) = {x : |x− c| < r}, [a, b] = {x : |x− c| ≤ r}
where c = (a+ b)/2 is the midpoint and r = (a− b)/2 is the radius.

• The distance d between (x1, y1) and (x2, y2) is d =
√

(x2 − x1)2 + (y2 − y1)2.
• An equation of the circle of radius r with center (a, b) is (x− a)2 + (y − b)2 = r2.
• A zero or root of a function f(x) is a value c such that f(c) = 0.
• The definitions of increasing and decreasing on an interval – distinguish between
increasing / decreasing and strictly increasing / decreasing.

• Vertical Line Test: A curve in the plane is the graph of a function if and only if
each vertical line x = a intersects the curve in at most one point.

• Even function: A function f is even if f(−x) = f(x), in which case the graph is
symmetric about the y-axis.

• Odd function: A function f is odd if f(−x) = −f(x), in which case the graph is
symmetric about the origin.

• There are four common ways to transform the graph of f(x) to obtain the graph
of a related function:
(1) f(x) + c; shifts the graph of f(x) vertically c units.
(2) f(x− c); shifts the graph of f(x) horizontally c units to the right, c > 0.
(3) kf(x); scales the graph of f(x) vertically by a factor of k.
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(4) f(kx); scales the graph of f(x) horizontally by a factor |k| (this is a com-
pression if |k| > 1), if k < 0 the function is reflected in the y-axis.

Lecture Material
As this material should all be review, it should be covered as quickly as possible. Start
with the usual terminology used to describe real numbers: real R, rational Q, whole, and
irrational numbers. Define the absolute value function, and emphasize that the definition
will be used in this course. State the basic properties of absolute value |a| = | − a| and
|ab| = |a| · |b|, as well as the triangle inequality |a+b| ≤ |a|+ |b|. Define the three types of
intervals (open, closed, and half-open), and write down the equivalent inequalities. Work
Exercise 16. Now state the basic terminology of the Cartesian plane (x, y-coordinates,
origin, axis) and state the distance formula. Work Exercise 36(a). Derive the standard
form of a circle using the distance formula. Work Exercise 37(b). Define a function, as
well as stating the usual terminology associated with functions (value, domain, range,
independent variable, dependent variable, graph, zero or root, odd, even, increasing,
decreasing). Work Exercises 47, 52, and 54. State the Vertical Line Test. Discuss
translation (shifting) and scaling of graphs. Work Exercise 72.

Be sure that students understand the concepts of increasing and decreasing on an
interval. They should know this graphically, numerically (how increasing / decreasing
looks in a table), analytically, and verbally (the definitions).

Discussion Topics/Class activities
Work Exercise 79 for the class, and then show the students that a polynomial function
is even if and only if every exponent is even and is odd if and only if every exponent
is odd. Constants are considered to have exponent 0. Then have the class determine
whenever the product and quotient of even functions is even and whenever the product
and quotient of odd functions is odd.

Suggested Problems
Exercises 3, 5, 11, 13, 19, 23, 28 (numerical), 41–55 odd (numerical and graphical), 59,
63 (graphical), 74, 76, 78 (graphical)
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Worksheet 1.1.
Real Numbers, Functions, and Graphs

1. Express the set of numbers x satisfying the condition |x+ 7| < 2 as an interval.

2. Plot the points (1, 4) and (3, 2) and calculate the distance between them.

1 2 3 4
x

1

2

3

4

5
y

3. Determine the equation of the circle with center (2, 4) passing through (1,−1).

4. Find the domain and range of f(x) =
1

x2
.
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5. Find the interval on which the function f(x) =
1

x2 + 1
is increasing.

6. Find the zeros of the function f(x) = 2x2 − 4 and sketch its graph by plotting points.
Use symmetry and increasing/decreasing information if appropriate.

-3 -2 -1 1 2 3 x

-4

-2

2

4

y
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7. Let f(x) = x2. Sketch the graphs of the following functions over [−2, 2].

a. f(x+ 1)

b. f(x) + 1

c. f(5x)

d. 5f(x)

-2 -1 1 2
x

1

2

3

4

5

y
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Solutions to Worksheet 1.1

1. Express the set of numbers x satisfying the condition |x+ 7| < 2 as an interval.
The expression |x+ 7| < 2 is equivalent to −2 < x + 7 < 2. Therefore, −9 < x < −5

which represents the interval (−9,−5).

2. Plot the points (1, 4) and (3, 2) and calculate the distance between them.

1 2 3 4 5

1

2

3

4

5

"######################################H3- 1L2 + H2- 4L2 =2
�!!!!

2

3. Determine the equation of the circle with center (2, 4) passing through (1,−1).
The equation of the indicated circle is (x− 2)2 + (y − 4)2 = 32 = 9.

4. Find the domain and range of f(x) =
1

x2
.

D : {x : x 6= 0}
R : {y : y > 0}

5. Find the interval on which the function f(x) =
1

x2 + 1
is increasing.

A graph of the function y =
1

x2 + 1
follows.

-4 -2 2 4

0.2

0.4

0.6

0.8

1
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From the graph, we see that the function is increasing on the interval (−∞, 0].

6. Find the zeros of the function f(x) = 2x2 − 4 and sketch its graph by plotting points.
Use symmetry and increasing/decreasing information if appropriate.

-2
-
�!!!!2 -1 1 �!!!!2 2

-4

-2

2

4

7. Let f(x) = x2. Sketch the graphs of the following functions over [−2, 2].

a. f(x+ 1)

b. f(x) + 1

c. f(5x)

d. 5f(x)

-2 -1 1 2

1

2

3

4

5

y= f Hx+1L

y= f HxL+1

y= f H5xLy=5 f HxL
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1.2. Linear and Quadratic Functions.

Class Time AB and BC, 0–1 period. Essential.

The material in this section is a review of precalculus material. The section can be
greatly shortened or omitted in the AP course. The items listed below are important for
calculus and your students should understand them.

Key Points

• A function of the form f(x) = mx+ b is a linear function.
• The general equation of a line is ax + by = c. The line y = c is horizontal and
the line x = k is vertical.

• There are three convenient forms for writing the equation of a nonvertical line:
(1) Point-slope form: y− b = m(x− a), where m is the slope and the line passes

through the point (a, b).
(2) Point-point form: The line through P = (a1, b1) and Q = (a2, b2) has slope

m =
b2 − b1
a2 − a1

and equation y − b1 = m(x− a1).

(3) Slope-intercept form: y = mx + b, where m is the slope and b is the y-
intercept.

• Two lines with slopes m1 and m2, respectively, are parallel if and only if m1 = m2

and they are perpendicular if and only if m1 = −1/m2 (provided that m2 6= 0).
• The roots of a quadratic polynomial f(x) = ax2+bx+c are given by the quadratic

formula x =
−b±

√
D

2a
, where D = b2 − 4ac is the discriminant. The roots are

real if D ≥ 0 and complex with nonzero imaginary part if D < 0.
• Completing the square consists of writing a quadratic function as a constant
multiple of a square plus a constant.

Lecture Material
Begin by reminding the students that a linear function has the form f(x) = mx + b,
where m is the slope of the line, and b is the y-intercept. Setting y = f(x), we have
y = mx + b, the slope-intercept form of the line. Setting ∆x = x2 − x1 and ∆y =
y2 − y1 = f(x2)− f(x1), we have

m =
∆y

∆x
=

vertical change

horizontal change

(illustrated graphically in Figure 1). Point out that slope measures steepness; a negative
slope indicates that the line points down from left to right (and so is strictly increasing
if m > 0 and strictly decreasing if m < 0); a horizontal line has slope 0 (and equation
y = b); and a vertical line has “infinite” (or undefined) slope (and equation x = c for
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some constant c). Discuss parallel and perpendicular lines: Two lines of slope m1 and
m2 are parallel if and only if m1 = m2 and perpendicular if and only if m1 = −1/m2, or
m1m2 = −1. Now turn to the standard forms of equations of lines. First, the general
linear equation is ax+ by = c, where a and b are not both 0. Other useful forms are the
point-slope form y− b = m(x−a), where (a, b) is a point on the line, and the point-point
form

y − b1 = m(x− a1), where m =
b2 − b1
a2 − a1

Now work Exercises 2, 10, 14, and 18.
A quadratic function is a function of the form f(x) = ax2 + bx+ c, where a 6= 0. The

graph of f(x) is a parabola, and the parabola opens upward if a > 0 and downward if
a < 0. The discriminant of f(x) is D = b2 − 4ac, and the roots of f(x) are given by the
quadratic formula,

x =
−b±

√
b2 − 4ac

2a
=

−b±
√
D

2a
The sign of D determines the number of real roots of f(x). If D > 0, then f(x) has two
real roots, if D = 0, then f(x) has one real root, and if D < 0, then f(x) has no real roots.
Now show how to complete the square, and write f(x) in the form f(x) = a(x− h)2 + k.
The point (h, k) is the vertex of the parabola, and k is either the maximum or minimum
value of f(x), depending upon whether the parabola opens upward or downward. Point
out that the quadratic formula is obtained by completing the square with the equation
ax2 + bx+ c = 0. Now work Exercises 38 and 42.

Discussion Topics/Class Activities
Have students work Exercises 53 and 58.

Suggested Problems
Exercises 1–19 odd (numerical), 33–45 odd (numerical)
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Worksheet 1.2.
Linear and Quadratic Functions

1. Find the slope, y-intercept, and x-intercept of the line with equation y = 4− x.

In Exercises 2, 3, and 4, find the equation of the line with the given description.

2. Slope −2, y-intercept 3.

3. Passes through (−1, 4) and (2, 7).

4. Vertical, passes through (−4, 9).
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5. Complete the square and find the minimum or maximum value of the quadratic function
y = 2x2 − 4x− 7.

6. Sketch the graph of y = x2 − 6x+ 8 by plotting the roots and the minimum point.

-1 1 2 3 4 5 x

-2

-1

1

2

3

4

5
y
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Solutions to Worksheet 1.2

1. Find the slope, y-intercept, and x-intercept of the line with equation y = 4− x.
Because the equation of the line is given in slope-intercept form, the slope is the

coefficient of x, and the y-intercept is the constant term; that is, m = −1 and the y-
intercept is 4. To determine the x-intercept, substitute y = 0 and then solve for x:
0 = 4− x or x = 4.

In Exercises 2, 3, and 4, find the equation of the line with the given description.

2. Slope −2, y-intercept 3.
The equation is y = −2x+ 3.

3. Passes through (−1, 4) and (2, 7).
The slope of the line that passes through (−1, 4) and (2, 7) is

m =
7− 4

2− (−1)
= 1

Using the point-slope form for the equation of a line, y − 7 = 1(x− 2) or y = x+ 5.

4. Vertical, passes through (−4, 9).
A vertical line has the equation x = c for some constant c. Because the line needs to

pass through the point (−4, 9), we must have c = −4. The equation of the desired line
is then x = −4.

5. Complete the square and find the minimum or maximum value of the quadratic function
y = 2x2 − 4x− 7.

y = 2(x2 − 2x+ 1− 1)− 7 = 2(x2 − 2x+ 1)− 7− 2 = 2(x− 1)2 − 9.

Therefore, the minimum value of the quadratic polynomial is −9, which occurs at x = 1.
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6. Sketch the graph of y = x2 − 6x+ 8 by plotting the roots and the minimum point.

1 2 3 4 5 6

2

4

6

8
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1.3. The Basic Classes of Functions.

Class Time AB and BC, 0–1 period. Essential.

The material in this section is a review of precalculus material. The section can be
greatly shortened or omitted in the AP course. The items listed below are important for
calculus and your students should understand them.

Key Points

• The function xm is called the power function with exponent m. A polynomial
P (x) is a sum of multiples of power functions xm, where m is a whole number:

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

P (x) has degree n (provided an 6= 0) and an is the leading coefficient.
• A rational function is a quotient P (x)/Q(x) of two polynomials.
• An algebraic function is produced by taking sums, products, and nth roots of
polynomials and rational functions.

• An exponential function has the form f(x) = bx, where b > 0 is the base.
• The composite function f ◦ g is defined by (f ◦ g)(x) = f(g(x)). The domain of
f ◦ g is the set of x such that g(x) belongs to the domain of f .

Lecture Material
Begin by defining a polynomial function P (x) = anx

n + an−1x
n−1 + · · ·a1x + a0, and

note that the numbers a0, . . . , an are coefficients, the degree of P (x) is n (provided that
an 6= 0), an is the leading coefficient, and the domain of any polynomial is R. A rational
function is a quotient of polynomials: f(x) = P (x)/Q(x), where P (x) and Q(x) are
polynomials. Note that the domain of a rational function is all real numbers except
where Q(x) = 0. The next class of functions is the algebraic functions, produced by
taking sums, multiples, and quotients of roots of polynomials and rational functions. The
domains of algebraic functions are more subtle and best handled by example. Basically,
though, one needs to exclude any numbers that will give a negative number under an
even radical or which will produce division by 0. Work Exercises 8 and 12. Exponential
functions have the form f(x) = bx, where b > 0, have domain R and range (0,∞), are
increasing if b > 1, and are decreasing if 0 < b < 1. Their inverses are the logarithmic
functions logb x. Finally, trigonometric functions are built from sin x and cosx and will
be studied in Section 1.4.

There are several methods for constructing new functions from old. The most familiar
are addition, subtraction, multiplication, and division of functions. Perhaps the most
important way to combine functions is composition, defined by f ◦ g(x) = f(g(x)), for
values of x such that g(x) lies in the domain of f . Work Exercises 28 and 32.
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Discussion Topics/Class Activities
Have students work Exercises 40 and 41.

Suggested Problems
Exercises 1–11 odd (numerical), 13–25 odd (descriptive), 27–33 odd (numerical)
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Worksheet 1.3.
The Basic Classes of Functions

In Exercises 1 and 2, determine the domain of the function.

1. f(x) =

√
x

x2 − 9

2. f(x) =
x+ x−1

(x− 3)(x+ 4)

In Exercises 3 and 4, calculate the composite functions f ◦ g and g ◦ f and determine
their domains.

3. f(x) =
1

x
, g(x) = x−4

4. f(x) =
1

x2 + 1
, g(x) = x−2
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Solutions to Worksheet 1.3

In Exercises 1 and 2, determine the domain of the function.

1. f(x) =

√
x

x2 − 9
x ≥ 0, x 6= ±3

2. f(x) =
x+ x−1

(x− 3)(x+ 4)
x 6= 0, 3,−4

In Exercises 3 and 4, calculate the composite functions f ◦ g and g ◦ f and determine
their domains.

3. f(x) =
1

x
, g(x) = x−4.

f(g(x)) = x4; D: R \ {0}

g(f(x)) = x4: D: R \ {0}

4. f(x) =
1

x2 + 1
, g(x) = x−2.

f(g(x)) =
1

(x−2)2 + 1
=

1

x−4 + 1
; D: x 6= 0

g(f(x)) =

(
1

x2 + 1

)−2

= (x2 + 1)2; D: R
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1.4. Trigonometric Functions.

Class Time AB 0–2 periods; BC 0–1 period. Very important.

The material in this section is a review of precalculus material. The section can be
greatly shortened or omitted in the AP course. The items listed below are important for
calculus and your students should understand them.

Key Points

• An angle of θ radians subtends an arc of length θr on a circle of radius r.
• To convert from radians to degrees, multiply by 180/π.
• To convert from degrees to radians, multiply by π/180.
• Unless otherwise stated, all angles in this text are in radians.
• The functions cos θ and sin θ are defined in terms of right triangles for acute angles
and as coordinates of a point on the unit circle for general angles:

Θ

a

b
c

sin θ =
b

c
=

opposite

hypotenuse
, cos θ =

a

c
=

adjacent

hypotenuse

Θ

Hcos Θ , sin Θ L

1

1

• Some basic properties of sine and cosine:
(1) Periodicity: sin(θ+2πk) = sin θ, cos(θ+2πk) = cos θ, k = any integer.
(2) Parity: sin(−θ) = − sin θ, cos(−θ) = cos θ
(3) Basic identity: sin2 θ + cos2 θ = 1

• The four additional trigonometric functions:

tan θ =
sin θ

cos θ
, cot θ =

cos θ

sin θ
, sec θ =

1

cos θ
, csc θ =

1

sin θ
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• The graphs of all 6 trigonometric functions.

• The values of the trigonometric functions at 0,
π

6
,
π

4
,
π

3
, and

π

2
.

Lecture Material
Begin with the two common methods of measuring angles, degrees and radians, and

show that to convert from degrees to radians one multiplies by
π

180
, while to convert

from radians to degrees one multiplies by
180

π
. Give an example of each. Give the usual

right triangle definitions of sin θ and cos θ (so that 0 ≤ θ ≤ π

2
), and then show how these

definitions can be extended to all angles using the unit circle. Use the unit circle to show
that sin θ is odd while cos θ is even. Discuss calculating sin θ and cos θ for the special
angles 0, π/6, π/4, π/3, π/2 using appropriate special triangles or the unit circle (this
information is tabulated in Table 2). Point out using the unit circle that both sin θ and
cos θ are periodic of period 2π. Also discuss the sign of sin θ and cos θ in each of the four
quadrants. Now show the graph of sin θ and cos θ using Figure 6 for the graph of sin θ.
(It may be useful to point out to the students that much of the information here is stored
in the graphs of sin θ and cos θ.) Now define the other four trigonometric functions tanx,
cot x, sec x, and csc x, as well as their graphs (found in Figure 10). Now work Exercises
8, 10, 20, 22, and 32.

Turning to identities, show that sin2 θ + cos2 θ = 1 using the unit circle definitions of
sin θ and cos θ, and show the equivalent versions tan2 θ+1 = sec2 θ and 1+cot2 θ = csc2 θ.
Point out the Basic Trigonometric Identities listed in the text, as well as the Law of
Cosines (Theorem 1), which is a generalization of the Pythagorean Theorem. Work
Exercises 24 and 46.

Discussion Topics/Class Activities
Have the students work Exercise 57 at their desks.

Suggested Problems
Exercises 1, 3, 4, 6, 7 (numerical), 9–13 odd, 16 (numerical), 19–25 odd (numerical), 35,
37, 39
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Worksheet 1.4.
Trigonometric Functions

1. Find the values of the six standard trigonometric functions at θ = 11π/6.

2. Find all angles between 0 and 2π satisfying tan θ = 1.

3. Find cos θ and tan θ if sin θ =
3

5
and 0 ≤ θ < π/2.

4. Find sin θ, cos θ, and sec θ if cot θ = 4 and 0 ≤ θ < π/2.
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5. Sketch the graph of y = cos

(

2

(

θ − π

2

))

over the interval [0, 2π].

Π

����

4
Π

����

2
3 Π
��������

4
Π 5 Π

��������

4
3 Π
��������

2
7 Π
��������

4
2 Π

x

-2

-1.5

-1

-0.5

0.5

1

1.5

2

y

6. Find sin 2θ and cos 2θ if tan θ =
√
2 and 0 ≤ θ < π/2.

7. Derive the identity cos2
(
θ

2

)

=
1 + cos θ

2
using the identities listed in this section.
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Solutions to Worksheet 1.4

1. Find the values of the six standard trigonometric functions at θ = 11π/6.
We see that

sin
11π

6
= −1

2
and cos

11π

6
=

√
3

2
Then

tan
11π

6
=

sin 11π
6

cos 11π
6

= −
√
3

3

cot
11π

6
=

cos 11π
6

sin 11π
6

= −
√
3

csc
11π

6
=

1

sin 11π
6

= −2

sec
11π

6
=

1

cos 11π
6

=
2
√
3

3

2. Find all angles between 0 and 2π satisfying tan θ = 1.

θ =
π

4
,
5π

4

3. Find cos θ and tan θ if sin θ =
3

5
and 0 ≤ θ < π/2.

Using the Pythagorean Theorem we see that

cos θ =
4

5
and tan θ =

3

4

4. Find sin θ, cos θ, and sec θ if cot θ = 4 and 0 ≤ θ < π/2.
Using the Pythagorean Theorem, we see that

sin θ =
1√
17

=

√
17

17
, cos θ =

4√
17

=
4
√
17

17
and sec θ =

√
17

4
.
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5. Sketch the graph of y = cos

(

2

(

θ − π

2

))

over the interval [0, 2π].

Π

����

2
Π 3 Π

��������

2
2 Π

-1

-0.5

0.5

1

6. Find sin 2θ and cos 2θ if tan θ =
√
2 and 0 ≤ θ < π/2.

By the double-angle formulas, sin 2θ = 2 sin θ cos θ and cos 2θ = cos2 θ − sin2 θ. Using
the Pythagorean Theorem,

sin θ =

√
2√
3
=

√
6

3
and cos θ =

1√
3
=

√
3

3
.

Finally,

sin 2θ = 2

√
6

3
·
√
3

3
=

2
√
2

3

cos 2θ =
2

3
− 1

3
=

1

3

7. Derive the identity cos2
(
θ

2

)

=
1 + cos θ

2
using the identities listed in this section.

Substitute x = θ/2 into the double-angle formula for cosine, cos2 x =
1

2
(1 + cos 2x),

to obtain cos2
(
θ

2

)

=
1 + cos θ

2
.
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1.5. Inverse Functions.

Class Time AB and BC, 0–2 periods. Essential.

Key Points

• Inverse of a function
(i) One-to-one functions
(ii) Calculating the inverse of a function
(iii) Relation between the graphs of f(x) and f−1(x)

• Inverse trigonometric functions

Lecture Material
Calculate inverses of functions as in Examples 1 and 2, pointing out the relations between
the domains and ranges of f and f−1 and the fact that the graph of f−1(x) is the reflection
of the graph of f across the line y = x.

A function f is invertible if and only if f is one-to-one onto its range. A function f is
one-to-one on its domain if and only if f(x1) = f(x2) implies that x1 = x2 for all x1, x2 in
its domain. A function f is onto its range if and only if for every y in the range of f , there
exists an x in the domain of f such that f(x) = y. A graphical test for one-to-oneness
is that all horizontal lines intersect the graph at most once. Sketch one-to-one and not
one-to-one functions. Explain that it is often possible to make a function one-to-one by
restricting the domain. Illustrate this idea with y = x2 on [0,∞).

Show that the graph of f−1 is obtained by reflecting the graph of f(x) across the line
y = x. Illustrate this concept with f(x) = x3 on [−2, 2] and f−1(x = x1/3 on [−8, 8].

Next introduce inverse trigonometric functions by graphing y = sin x on [−π, π] and
reflecting it across y = x to get the inverse sine function denoted sin−1(x) on [−1, 1].
Explain that cos x is restricted to [0, π] to obtain the inverse and tanx is restricted to
[−π, π] to obtain its inverse. If time permits, discuss the remaining three trigonometric
functions.

Discussion Topics/Class Activities
Discuss Exercise 51 about the inverses of even and odd functions.

Suggested Problems
Exercises 2, 3 (basic), 4 (algebraic), 9, 13 (algebraic and graphical), 16 (graphical), 19,
23, 25, 27, 29, 31, 39, 43 (basic inverse trig problems)
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Worksheet 1.5.
Inverse Functions

1. Find a domain on which f is one-to-one and a formula for the inverse of f restricted to
this domain.

a. f(x) =
1

x+ 1

b. f(s) =
1

s2

2. Evaluate without using a calculator.

a. sin−1 1

2

b. sec−1 2√
3

c. sin−1

(

sin
4π

3

)

d. tan

(

cos−1 2

3

)
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Solutions to Worksheet 1.5

1. Find a domain on which f is one-to-one and a formula for the inverse of f restricted to
this domain.

a. f(x) =
1

x+ 1

f is one-to-one on (∞,−1) ∪ (−1,∞). f−1(x) =
1− x

x
for all x 6= 0

b. f(s) =
1

s2
.

f is one-to-one on (0,∞). f−1(x) =
1√
x
for all x ∈ (0,∞).

2. Evaluate without using a calculator.

a. sin−1 1

2

sin−1 1

2
=

π

6

b. sec−1 2√
3

sec−1 2√
3
=

π

6

c. sin−1

(

sin
4π

3

)

sin−1

(

sin
4π

3

)

=
4π

3

d. tan

(

cos−1 2

3

)

tan

(

cos−1 2

3

)

=

√
5

2
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1.6. Exponential and Logarithmic Functions.

Class Time AB and BC, 0–2 periods. Essential.

Key Points

• Exponential function y = bx for b > 0, b 6= 1
• bx is increasing if b > 1 and decreasing if b < 1.
• The number e ≈ 2.71828 is the unique number such that the area of the region

under the hyperbola y =
1

x
for 1 ≤ x ≤ e is equal to 1.

• For b > 0 with b 6= 1, the logarithmic function logb x is the inverse of bx. That is
x = by ⇐⇒ y = logb x.

• The natural logarithm is the logarithm to the base e and is denoted ln x.
• Important logarithmic properties:

(i) logb(xy) = logb x+ logb y

(ii) logb(
x

y
) = logb x− logb y

(iii) logb(x
n) = n logb x

(iv) logb 1 = 0 and logb b = 1
• Hyperbolic trig functions are not tested on the AP exams and may be omitted.

Lecture Material
Define an exponential function as a function of the form f(x) = bx for b > 0, b 6= 1.
The number b is called the base. If b > 1, the bx is increasing. If 0 < b < 1, then bx is

decreasing. Graph y = 2x and y = (
1

2
)x. Exponential functions are very important in

applications such as population growth and radioactive decay.
Discuss the Laws of Exponents given in Theorem 1 and work several problems such as

Example 1 and Exercises 4, 6, and 26.
There is a unique number e ≈ 2.71828 such that the area of the region under the

hyperbola y =
1

x
for 1 ≤ x ≤ e is equal to 1. The function y = ex is especially important

in applications. We will come back to this later.
The inverse of the exponential function bx is called the logarithmic function to the base

b and is denoted logb x. When b = e, it is called the natural logarithm and is denoted
ln x. Graph ex and ln x together on the same coordinate axes. State the logarithmic
properties given in the Key Points and explain that they follow easily from the exponential
properties. Work Example 3 and Exercises 12, 16, 18, and 30.

An important formula is the change of base formula logb x =
loga x

loga b
. It is most often

used with a = e. Show that log2 10 =
ln 10

ln 2
.
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Discussion Topics/Class Activities
Discuss Exercise 49.

Suggested Problems
Exercises 1 (basic), 3, 5, 7, 9 (algebraic), 11–25 odd (log properties)
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Worksheet 1.6.
Exponential and Logarithmic Functions

1. Solve for the unknown variable.

a. et
2

= e4t−3

b. (
√
5)x = 125

c. 6e−4t = 2

d. log3 y + 3 log3(y
2) = 14

2. Calculate directly without using a calculator.

a. log5
1

25

b. log7(49)
2

c. log25 30 + log25
5

6

3. Compute sinh 1 using a calculator.

4. Compute sinh(ln 3) without using a calculator.
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Solutions to Worksheet 1.6

1. Solve for the unknown variable.

a. et
2

= e4t−3

Equating exponents gives t2 − 4t+ 3 = 0. Thus (t− 3)(t− 1) = 0. So t = 3 and t = 1
are the answers.

b. (
√
5)x = 125

(
√
5)x = 125 =⇒ 5

x
2 = 53 =⇒ x

2
= 3 =⇒ x = 6

c. 6e−4t = 2

Taking the natural logarithm of both sides gives −4t = ln
1

3
= − ln 3 =⇒ t =

ln 3

4
d. log3 y + 3 log3(y

2) = 14.
log3 y + 3 log3(y

2) = 14 =⇒ log3 y
7 = 14 =⇒ y7 = 314 =⇒ y7 = (32)7 =⇒ y = 9

2. Calculate directly without using a calculator.

a. log5
1

25

log5
1

25
= log5(5

−2) = −2

b. log7(49)
2

log7(49)
2 = log7(7

4) = 4

c. log25 30 + log25
5

6

log25 30 + log25
5

6
= log25(30)(

5

6
) = log25 25 = 1

3. Compute sinh 1 using a calculator.

sinh 1 =
e1 − e−1

2
≈ 1.1752.

4. Compute sinh(ln 3) without using a calculator.

sinh(ln 3) =
eln 3 − e− ln 3

2
=

3− 1
3

2
=

8

6
=

4

3
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1.7. Technology: Calculators and Computers.

Class Time AB 0–2 periods; BC 0–1 period. Essential.

AP Calculus students are expected to use technology, specifically graphing calculators,
in their work in calculus. The use of Computer Algebra Systems (CAS) and computer
graphing software is encouraged. As with the other topics in this chapter, students should
have experience with using technology to do mathematics before coming to calculus. This
section touches on some of the principal uses of graphing calculators. It may be omitted
if your students are familiar with them.

On the AP Calculus exams, students are expected to know how to do the following 4
things on their graphing calculator. These items are tested on the exams. Items (1) and
(2) are discussed in this section; items (3) and (4) are discussed in later chapters.

(1) Graph of a function in a given viewing rectangle or in a convenient viewing window
of their choosing.

(2) Solve an equation numerically. This may be done by finding where the graphs of
the left and right sides intersect (using the built-in intersection operation), or by
using any built-in equation solving operation.

(3) Find the numerical value of a derivative at a point.
(4) Find the numerical value of a definite integral.

Students are expected to show all the work leading to any other answer (e.g. finding a
maximum value) even if the calculator has a built-in operation for doing it.

Key Points

• The appearance of a graphs depends upon the chosen viewing rectangle. One
should experiment with different viewing rectangles to obtain one that displays
the relevant information. Note that the scales along the x and y-axis may change
as you vary the viewing rectangle.

• The following are some ways in which graphing calculators and computer algebra
systems can be used in calculus:
(1) Visualizing the behavior of a function.
(2) Finding solutions graphically or numerically.
(3) Conducting graphical or numerical experiments.
(4) Illustrating theoretical ideas (for example, local linearity).

Lecture Material
Discuss the general uses of calculators in calculus (as listed in the Key Points). Then
stress the importance of a correct viewing window (Figure 3 giving three viewing rectan-
gles for f(x) = 12− x− x2 may be useful for this). That is, the viewing window should
be chosen, usually by trial and error, so that it contains all of the relevant information
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for the problem under consideration. You are looking for minima and maxima, places
where the graph hits the x and y axis, and vertical and horizontal asymptotes. Work
Exercises 6, 8, 10, and 16.

Discussion Topics/Class Activities
Discuss Chebyshev polynomials as outlined in Exercise 24.

Suggested Problems
Exercises 1–17 odd (calculator)
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Worksheet 1.7.

Technology: Calculators and Computers

1. How many solutions does cosx = x2 have?

x

y

2. Plot the graph of f(x) =
8x+ 1

8x− 4
in an appropriate viewing rectangle. What are the

vertical and horizontal asymptotes?

x

y
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3. Illustrate local linearity for f(x) = x2 by zooming in on the graph at x = 0.5.

x

y

4. Investigate the behavior of the function f(x) =

(
x+ 6

x− 4

)x

as x grows large by making a

table of function values and plotting a graph. Describe the behavior in words.

x

y
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Solutions to Worksheet 1.7

1. How many solutions does cosx = x2 have?
The equation cos x = x2 has exactly two solutions. If |x| > π/2, then x2 > (π/2)2 >

1 > cos(x).

-

Π

����

2
-

Π

����

4
Π

����

4
Π

����

2

1

2. Plot the graph of f(x) =
8x+ 1

8x− 4
in an appropriate viewing rectangle. What are the

vertical and horizontal asymptotes?

f(x) =
8x+ 1

8x− 4
has vertical asymptote x = 1

2
and horizontal asymptote y = 1.

-2 -1 1 2 3

-10

-5

5

10

3. Illustrate local linearity for f(x) = x2 by zooming in on the graph at x = 0.5.

0.46 0.48 0.52 0.54

0.09

0.11

0.12

0.13

0.14

0.15

0.16
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4. Investigate the behavior of the function f(x) =

(
x+ 6

x− 4

)x

as x grows large by making a

table of function values and plotting a graph. Describe the behavior in words.

x 10 102 103 104 105 106 107 108

f(x) 18183.9 20112.4 21809.3 22004.5 22024.3 22026.2 22026.44 22026.46

100 200 300 400 500 600 700

18000

19000

20000

21000

The function f(x) =

(
x+ 6

x− 4

)x

has a vertical asymptote at x = 4 (from the right) and

decreases to approximately 16300 at x ≈ 16. Then f(x) increases and appears to have a
vertical asymptote at about y = 22026.5.
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Ray Cannon’s Chapter 2 Overview

The notion of limit is central to calculus, and is what distinguishes calculus from
algebra. The chapter starts in Section 2.1 with the key idea of defining instantaneous

rate of change as the limit of average rates of change over intervals whose lengths go
to zero. An understanding of this approach here provides the underpinning for the
importance of the derivative developed in Chapter 3.

AP students are expected to be able to work with functions represented numerically
and graphically, and this is part of the goal of Section 2.2, along with the development
of one-sided limits and infinite limits. Note that infinite limits are not limits in the true
sense of the word, but are used to describe the geometric property of vertical asymptotes
of a graph. Section 2.3 lays the groundwork for the more precise computation of limits by
showing the laws that govern algebraic manipulation of limits. Section 2.4 then introduces
the important concept of continuity, and makes the point that since all our familiar
functions are continuous on their domains, limits of these functions can be computed by
simple functional evaluation.

Section 2.5 then shows how to manipulate the formula for f(x) when f is not con-
tinuous and simple evaluation does not work. Again, this section is very important for
understanding how to compute the value of a derivative using the definition, which follows
in Chapter 3. Section 2.6 develops some limits involving trigonometric functions, which
are transcendental functions; transcendental means that algebraic tools are not enough
for handling these functions. The last type of limit, limits at infinity, is discussed in
Section 2.7, and the geometric application here is horizontal asymptotes. The geometric
flavor continues in Section 2.8 as The Intermediate Value Theorem guarantees that the
graph of a function continuous on an interval is a connected piece. Lastly, Section 2.9
deals with the formal definition of limit. This is not a required element of the AP Course
Description, but many teachers like to give this as an added feature to their course to
present a more rigorous treatment of limits.
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2. Limits

2.1. Limits, Rates of Change, and Tangent Lines.

Class Time AB and BC, 1 period. Essential.

Key Points

• Average velocity =
change in position

change in time
.

• The average rate of change (ROC) of a function y = f(x) over an interval [x0, x1]
is

Avg ROC =
f(x1)− f(x0)

x1 − x0
=

∆y

∆x
.

Graphically, this may be interpreted as the slope of the secant line, that is, the
line passing through the points

(
x0, f(x0)

)
and

(
x1, f(x1)

)
.

• Estimating the instantaneous rate of change at a point; the slope of the tangent
line.

Lecture Material
The notion of rate of change is fundamental and is used throughout the course. Here,
the intention is to introduce the concepts of average rate of change of a function over an
interval and the instantaneous rate of change at a point as the limit of average rates of
change. Graphically, average rates of change correspond to slopes of secant lines, while
the instantaneous rate of change in f at a point x = x0 is the slope of the line tangent
to the graph of f at the point

(
x0, f(x0)

)
.

An especially important case is rectilinear motion. In this case, the average rate of
change in position with respect to time over the interval [t0, t1] is the average velocity
of the particle and the instantaneous rate of change of position with respect to time at
t = t0 is the instantaneous velocity at time t = t0.

Use examples to illustrate the computation of instantaneous rates of change both
numerically and graphically.

Discussion Topics/Class Activities
You could lead a discussion on what the tangent line means in a physical context, such
as a train derailing or a car hitting ice. Then you could provide students with pictures of
graphs of functions and have them draw what they think is the tangent line at different
points. Dynamic graphing software, such as Winplot or Geometer’s Sketchpad, can help
illustrate this concept.

Suggested Problems
Exercises 1, 3, 5, 6 (basic, numerical), 7, 9 (numerical), 19, 21, 23 (graphical), 25 (verbal
and graphical), 29 (graphing calculator)
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Worksheet 2.1.
Limits, Rates of Change, and Tangent Lines

1. A ball is dropped from a state of rest at time t = 0. The distance traveled after t seconds
is s(t) = 16t2 ft. Compute the average velocity over the time intervals [3,3.01], [3,3.005],
[3,3.001], and [3,3.0005]. Use this computation to estimate the ball’s instantaneous ve-
locity at t = 3. Compare this velocity to s′(3).

2. Draw the graph of f(x) =
√
x by plugging in x = 0, 1, 4, 9. Graphically find the slope

of the secant line between (1, 1) and (4, 2). Compare it to the average rate of change
over the interval [1, 4]. Estimate the instantaneous rate of change at x = 1 graphically.
Compare it to f ′(1).

3. Again consider f(x) =
√
x. Is the rate of change of f with respect to x greater at low or

high x values?
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4. Which graph has the property that for all x, the average rate of change over [0, x] is
greater than the instantaneous rate of change at x?

x

y HAL

x

y HBL
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Solutions to Worksheet 2.1

1. A ball is dropped from a state of rest at time t = 0. The distance traveled after t seconds
is s(t) = 16t2 ft. Compute the average velocity over the time intervals [3,3.01], [3,3.005],
[3,3.001], and [3,3.0005]. Use this computation to estimate the ball’s instantaneous ve-
locity at t = 3. Compare this velocity to s′(3).

h .01 .005 .001 .0005
s(3+h)−s(3)

h
96.16 96.08 96.016 96.008

s′(3) = lim
h→0

s(3 + h)− s(3)

h
= 96.

2. Draw the graph of f(x) =
√
x by plugging in x = 0, 1, 4, 9. Graphically find the slope

of the secant line between (1, 1) and (4, 2). Compare it to the average rate of change
over the interval [1, 4]. Estimate the instantaneous rate of change at x = 1 graphically.
Compare it to f ′(1).

Slope of the line through (1, 1) and (4, 2): m = 1/3
Instantaneous rate of change at x = 1: f ′(1) = 1/2

2 4 6 8

0.5

1

1.5

2

2.5

3

3. Again consider f(x) =
√
x. Are the rates of change of f with respect to x greater at low

or high x values?
Slopes are decreasing, so the instantaneous rates of change in f at x are getting smaller

as x increases.
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4. Which graph has the property that for all x, the average rate of change over [0, x] is
greater than the instantaneous rate of change at x?

x

y HAL

x

y HBL

Graph (B).
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2.2. Limits: A Numerical and Graphical Approach.

Class Time AB and BC, 2 periods. Essential.

Key Points

• lim
x→c

f(x)

(i) Definition.
(ii) Estimates of limits by graphical and numerical methods.

• One-sided limits.
• Functions that approach infinity as a limit.
• Limits that do not exist.

Lecture Material
The concept of limit plays a fundamental role in all aspects of calculus. Emphasis in this
section is on understanding this concept numerically and graphically. Use graphs and
tables of values to investigate limits such as

lim
x→0

cosx

x2
, lim

x→1
x
|x− 1|
x− 1

, and lim
x→0

sin (1/x)

The zoom feature of graphing calculators is a very effective tool in this regard.

Point out that lim
x→c

f(x) may exist even if f(c) is not defined, as for example lim
x→0

sin x

x
.

Moreover, if f(x) approaches a limit as x → c, then the limiting value L is unique. In
particular, if lim

x→c+
f(x) 6= lim

x→c−
f(x), then f has no limit at x = c.

Infinite limits are not “true” limits; they describe the behavior of the function near a
point.

Discussion Topics/Class Activities
Use the Zoom feature of a graphing calculator to investigate limits as in Exercises 30,
38, 48 and 58.

Ask students to use the definition of limit to control errors: How close must x be to 1
for f(x) = 5− 3x to be within 10−5 of 2?

Suggested Problems (spread over 2 assignments)
Exercises 1, 2, 4 (numerical), 5, 6 (graphical), 12, 15 (definition), 17 to 37 odd (numeri-
cal), 49, 51, 53, 54 (graphical), 55, 57, 63 (graphing calculator)
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Worksheet 2.2.
Limits: A Numerical and Graphical Approach

1. Use your graphing calculator to graph f(x) =
cosx

x2
. Make a guess as to the value of

lim
x→0

cosx

x2
. Construct a table of values for f(−.1), f(−.01), f(−.001), f(−.0001), f(.1),

f(.01), f(.001), f(.0001). Estimate lim
x→0

cosx

x2
.

2. Graph f(x) = x
|x− 1|
x− 1

. What is the lim
x→1+

f(x) and lim
x→1−

f(x)? Construct a table

of values for f(.9), f(.99), f(.999), f(1.001), f(1.)1), f(1.1). What is the lim
x→1+

f(x) and

lim
x→1−

f(x)?
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3. Using a graphing calculator, graph f(x) = sin
1

x
. Does if look as if lim

x→0
f(x) exists? Con-

struct a table of values for f(−.1), f(−.01), f(−.001), f(−.0001), f(.1), f(.01), f(.001),
f(.0001). What do you conclude about lim

x→0
f(x)?

4. Using a graphing calculator, graph f(x) =
sin x

x
. Make a guess as to the lim

x→0
f(x). Con-

struct a table of values for f(−.1), f(−.01), f(−.001), f(−.0001), f(.1), f(.01), f(.001),
f(.0001). Estimate lim

x→0
f(x).
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Solutions to Worksheet 2.2

1. Use your graphing calculator to graph f(x) =
cosx

x2
Make a guess as to the value of

lim
x→0

cosx

x2
. Construct a table of values for f(−.1), f(−.01), f(−.001), f(−.0001), f(.1),

f(.01), f(.001), f(.0001). Estimate lim
x→0

cosx

x2
.

x ±.1 ±.01 ±.001 ±.0001

f(x) −0.49958347 −0.49999583 −0.49999996 −0.50000000

lim
x→0

cosx

x2
= −1

2

2. Graph f(x) = x
|x− 1|
x− 1

. What is the lim
x→1+

f(x) and lim
x→1−

f(x)? Construct a table

of values for f(.9), f(.99), f(.999), f(1.001), f(1.)1), f(1.1). What is the lim
x→1+

f(x) and

lim
x→1−

f(x)?

f(x) =

{
−x if x < 1
x if x > 1

-1 -0.5 0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

1.5

2

2.5

3

lim
x→1+

f(x) = 1 lim
x→1−

f(x) = −1
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3. Using a graphing calculator, graph f(x) = sin
1

x
. Does if look as if lim

x→0
f(x) exists? Con-

struct a table of values for f(−.1), f(−.01), f(−.001), f(−.0001), f(.1), f(.01), f(.001),
f(.0001). What do you conclude about lim

x→0
f(x)?

-1 -0.5 0.5 1

-1

-0.5

0.5

1

x ±.1 ±.01 ±.001 ±.0001

f(x) ∓0.544021 ∓0.506366 ±0.826880 ∓0.305614

lim
x→0

f(x) does not exist.

4. Using a graphing calculator, graph f(x) =
sin x

x
. Make a guess as to the lim

x→0
f(x). Con-

struct a table of values for f(−.1), f(−.01), f(−.001), f(−.0001), f(.1), f(.01), f(.001),
f(.0001). Estimate lim

x→0
f(x).

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

x ±.1 ±.01 ±.001 ±.0001

f(x) 0.99833417 0.99998333 0.99999983 1.0000000

lim
x→0

f(x) = 1
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2.3. Basic Limit Laws.

Class Time AB 2 periods; BC 1 period. Essential.

Key Points
The limit of a complicated function can be computed in terms of the limits of simpler
constituents. If lim

x→c
f(x) = L and lim

x→c
g(x) = M , then

• lim
x→c

(
f(x)± g(x)

)
= L±M

• lim
x→c

f(x) g(x) = LM

• If M 6= 0, then lim
x→c

f(x)

g(x)
=

L

M
.

Lecture Material
Since lim

x→c
x = c and lim

x→c
k = k for every c and for every constant k, repeated applica-

tions of the limit properties show that lim
x→c

kxn = kcn for every natural number n. Use

limit properties to evaluate limits of polynomial and rational functions at points in their
domains.

It is important to point out that the limit properties hold in general only for finite
limits. (Indeterminate forms are discussed in Sections 2.5 and 4.5.)

These limits, along with continuity and the limits of the Elementary functions, allow
you to find most limits by substituting c into the function. Use several examples from
Exercises 1 – 22 to prepare for this idea.

Discussion Topics/Class Activities

Challenge students to show that if lim
x→c

f(x)

x− c
exists (finite), then lim

x→c
f(x) = 0. (This is

essentially Exercise 39.)

Suggested Problems
Exercises 5, 9, 11, 13, 15, 19, 21 (basic), 25, 28, 35 (abstract)
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Worksheet 2.3.
Basic Limit Laws

1. lim
x→−1

(3x4 − 2x3 + 4x) =

2. lim
x→2

(x+ 1)(3x2 − 9) =

3. lim
t→4

3t− 14

t+ 1
=

4. Assuming that lim
x→6

f(x) = 4, find lim
x→6

f(x)2, lim
x→6

1

f(x)
, and lim

x→6
xf(x).

5. Assuming that lim
x→−1

f(x) = 3 and lim
x→−1

g(x) = 4, find lim
x→−1

f(x)g(x)− 2

3g(x) + 2
.
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Solutions to Worksheet 2.3

1. lim
x→−1

(3x4 − 2x3 + 4x) = 1

2. lim
x→2

(x+ 1)(3x2 − 9) = 1

3. lim
t→4

3t− 14

t+ 1
= −2

5

4. Assuming that lim
x→6

f(x) = 4, then lim
x→6

f(x)2 = 16, lim
x→6

1

f(x)
=

1

4
, and lim

x→6
xf(x) = 24.

5. Assuming that lim
x→−1

f(x) = 3 and lim
x→−1

g(x) = 4, then lim
x→−1

f(x)g(x)− 2

3g(x) + 2
=

5

7
.
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2.4. Limits and Continuity.

Class Time AB 2 periods; BC 1–2 periods. Essential.

Key Points

• Continuous functions.
(i) Continuity at a point.
(ii) Examples and types of discontinuities.
(iii) One-sided continuity.
(iv) Continuity on an interval.

• Combinations of continuous functions; in particular, composition of continuous
functions.

• Continuity of polynomials and rational functions.
• Continuity of trigonometric and exponential functions and nth-root functions.

Lecture Material
Discontinuities of a function correspond to breaks in the function’s graph. Three common
types are removable, jump, and infinite discontinuities, illustrated respectively by the

functions
sin x

x
,
|x|
x
, and

x2 + x+ 1

x
at 0. Another “worse” type of discontinuity is that

of sin(1/x) at 0.
Discuss examples of piecewise-defined functions and continuity on intervals. See Ex-

ample 2 and Exercise 6 in particular. Use limit properties to establish continuity of
polynomials and rational functions. Continuity of trigonometric and exponential func-
tions and nth-root functions follows from an examination of their graphs.

Emphasize the fact that the composition of continuous functions is continuous. Limits
of continuous functions can be evaluated by substitution. This idea is used in Section
2.5.

Discussion Topics/Class Activities
Exercises 50 and 80 present good discussion topics.

Suggested Problems (spread over 2 assignments)
Exercises 1, 2 (graphical), 9, 10, 12, 13 (using theorems), 17, 18, 21, 23, 25, 27, 29, 31,
33 (testing definitions), 39, 40, 42, 45 (abstract), 52, 55, 57, 65, 67, 70 (substitution
method), 79, 82 (graphical), 84
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Worksheet 2.4.
Limits and Continuity

1. Using a graphing calculator, graph f(x) =
sin x

x
. Show f has a removable discontinuity

at x = 0.

2. Graph f(x) =
|x|
x
. Show f has a jump discontinuity at x = 0.

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5
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3. Graph f(x) =
x2 + x+ 1

x
. Show f has an infinite discontinuity at x = 0.

-3 -2 -1 1 2 3

-4

-3

-2

-1

1

2

3

4

4. Determine where the following functions are discontinuous and classify the type of dis-
continuity.

a. f(x) = [[
1

2
x]]

b. f(t) = 3t−3/2 − 9t3

c. f(x) =
x2 − 9

x− 3

d. f(x) =
x− 9

x− 3

e. f(t) = tan 2t
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Solutions to Worksheet 2.4

1. Using a graphing calculator, graph f(x) =
sin x

x
. Show f has a removable discontinuity

at x = 0.

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

2. Graph f(x) =
|x|
x
. Show f has a jump discontinuity at x = 0.

f(x) =

{
−1 if x < 0
1 if x > 0

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-1.5

-1

-0.5

0.5

1

1.5

3. Graph f(x) =
x2 + x+ 1

x
. Show f has an infinite discontinuity at x = 0.

-1 -0.5 0.5 1

-40

-20

20

40

4. Determine where the following functions are discontinuous and classify the type of dis-
continuity.

a. f(x) = [[
1

2
x]]: f has a jump discontinuity at every even integer, n = 0,±2,±4, . . . .
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b. f(t) = 3t−3/2 − 9t3: lim
t→0+

f(t) = ∞. f is continuous at every t > 0.

c. f(x) =
x2 − 9

x− 3
: f has a removable discontinuity at x = 3.

d. f(x) =
x− 9

x− 3
: f has an infinite discontinuity at x = 3.

e. f(t) = tan 2t: f has an infinite discontinuity at every odd multiple of
π

4
: t =

±π

4
,±3π

4
,±5π

4
, . . . .
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2.5. Evaluating Limits Algebraically.

Class Time AB 2 periods; BC 1 period. Essential.

Key Points

• Indeterminate forms.
• Evaluating limits by transformation and substitution.

Lecture Material
The limit of a function at points where it is continuous is found by substitution. In this
section, we consider limits at points where functions are not defined yet still have limits.

Basic Limit Laws do not apply to limits of indeterminate forms such as
0

0
,
∞
∞ , or

∞ − ∞. But if f(x) is indeterminate at x = c, it is often possible to algebraically
simplify f(x) for x close to c, x 6= c, so that the resulting expression g(x) is continuous

at x = c. Consider f(x) =
x2 − x− 2

x− 2
. Then f has form

0

0
at x = 2 since x2 − x− 2 and

x− 2 each approach 0 as x → 2.

Step 1: Transform and cancel. If x 6= 2, then f(x) =
x2 − x− 2

x− 2
=

(x− 2)(x+ 1)

x− 2
=

x+1, and the function g(x) = x+1 is continuous everywhere; in particular, g is continuous
at x = 2.
Step 2: Substitute (evaluate using continuity). Since f(x) = x+ 1 for all x 6= 2,
lim
x→2

f(x) = lim
x→2

x+ 1 = 3.

The textbook offers several examples worked in detail. Slopes of tangent lines and

instantaneous rates of change typically involve limits of the form
0

0
, and therefore the

techniques presented here will be very important in Chapter 3.
Consider the graph of each of these not continuous functions.

Discussion Topics/Class Activities
Revisit Example 2 of Section 2.1: The speed of sound (m/s) in dry air is related to the

temperature T (degrees Kelvin) by the formula v = f(T ) = 20
√
T . Find the instanta-

neous rate of change in v with respect to T when T = 273.
For T 6= 273, the average rate of change in velocity over the interval from T to 273 is

f(T )− f(273)

T − 273
=

20
√
T − 20

√
273

T − 273

Now argue as in Example 3 of the current section:
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instantaneous rate of change = lim
T→273

average ROC

= lim
T→273

20
√
T − 20

√
273

T − 273

= lim
T→273

20(
√
T −

√
273)((

√
T +

√
273)

(T − 273)(
√
T +

√
273)

= lim
T→273

20(T − 273)

(T − 273)((
√
T +

√
273)

= lim
T→273

20√
T +

√
273

=
10√
273

≈ 0.605228 m/s per degree Kelvin

Suggested Problems
Exercises 1, 7, 9, 11, 17, 19, 26 (algebraic), 27, 31 (trigonometric), 35 (graphing calcula-
tor), 39, 46, 48 (algebraic)
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Worksheet 2.5.
Evaluating Limits Algebraically

1. lim
x→8

x2 − 64

x− 8
=

2. lim
x→2

x3 − 4x

x− 2
=

3. lim
h→4

(h+ 2)2 − 9h

h− 4
=

4. lim
x→16

√
x− 4

x− 16
=

5. lim
t→π

2

cot t

csc t
=

6. lim
t→π

2

(sec t− tan t) =

7. lim
θ→0

cos θ − 1

sin θ
=
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Solutions to Worksheet 2.5

1. lim
x→8

x2 − 64

x− 8
= 16

2. lim
x→2

x3 − 4x

x− 2
= 8

3. lim
h→4

(h+ 2)2 − 9h

h− 4
= 3

4. lim
x→16

√
x− 4

x− 16
=

1

8

5. lim
t→π

2

cot t

csc t
= 0

6. lim
t→π

2

(sec t− tan t) = 0

7. lim
θ→0

cos θ − 1

sin θ
= 0
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2.6. Trigonometric Limits.

Class Time AB and BC, 1 period. Essential.

Key Points

• Squeeze Theorem.

• lim
θ→0

sin θ

θ
= 1 and lim

θ→0

cos θ − 1

θ
= 0.

Lecture Material
A function f(x) is squeezed at x = c if there exist functions ℓ(x) and u(x) such that

(1) ℓ(x) ≤ f(x) ≤ u(x) for all x 6= c in an open interval I containing c and
(2) lim

x→c
ℓ(x) = lim

x→c
u(x) = L for some L

According to the Squeeze Theorem, it follows that lim
x→c

ℓ(x) = L as well. Illustrate the

Squeeze Theorem graphically and apply it to evaluate limits such as lim
x→0

x sin(1/x). There

is also a one-sided version of the Squeeze Theorem: Consider lim
x→0+

√
x cos(1/x).

In Section 2.1, graphical and numerical evidence was used to argue that
sin θ

θ
= 1

as θ → 0. This fact will be very important in Chapter 3, and a formal argument is

presented here. For 0 < θ < π/2, Figure 5 implies that cos θ ≤ sin θ

θ
≤ 1, and since

cos θ is continuous at 0 with cos 0 = 1, the Squeeze Theorem implies that lim
θ→0

cos θ =

lim
θ→0

sin θ

θ
= lim

θ→0
1 = 1.

Applying a change of variables, θ = ax, it follows that for any a,

lim
x→0

sin(ax)

x
= lim

θ→0
a
sin θ

θ
= a.

To show that lim
θ→0

cos θ − 1

θ
= 0, apply the Quotient Law from the Basic Limit Laws of

Section 2.3 and the half-angle formula from trigonometry:

lim
θ→0

cos θ − 1

θ
= lim

θ→0

−2 sin2(θ/2)

θ
= − lim

θ→0
sin(θ/2) lim

θ→0

sin(θ/2)

θ/2
= 0 · 1 = 0

Discussion Topics/Class Activities
Discuss Exercise 58.

Suggested Problems
Exercises 3 (graphical), 5, 9, 12, 15 (basic), 17, 19, 25, 31, 35
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Worksheet 2.6.
Trigonometric Limits

1. Use the Squeeze Theorem to evaluate lim
x→0

x2 sin
1

x
.

2. Use the Squeeze Theorem to evaluate lim
x→1

(x− 1) sin(
π

x− 1
).

3. lim
h→0

sin(5h)

3h
=

4. lim
x→0

x2

sin2 x
=

5. lim
t→0

cos t− cos2 t

t
=
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Solutions to Worksheet 2.6

1. Use the Squeeze Theorem to evaluate lim
x→0

x2 sin
1

x
.

For x 6= 0, 0 ≤ |x2 sin
1

x
| ≤ x2, so x2 sin

1

x
→ 0 as x → 0.

2. Use the Squeeze Theorem to evaluate lim
x→1

(x− 1) sin(
π

x− 1
).

For x 6= 1, −(x− 1) ≤ (x− 1) sin
π

x− 1
≤ (x− 1), so lim

x→1
(x− 1) sin(

π

x− 1
) = 0.

3. lim
h→0

sin(5h)

3h
=

5

3

4. lim
x→0

x2

sin2 x
= 1

5. lim
t→0

cos t− cos2 t

t
= 0



63

2.7. Limits at Infinity.

Class Time AB and BC, 1 hour. Essential.

Key Points

• The notation x → ∞ indicates that x increases without bound.
• The notation x → −∞ indicates that x decreases (through negative values) with-
out bound.

• Limits at infinity
• lim

x→∞
f(x) = L if f(x) approaches L as x → ∞

• lim
x→−∞

f(x) = L if f(x) approaches L as x → −∞
• If n > 0, then lim

x→∞
xn = ∞ and lim

±∞
x−n = 0.

• If n > 0 is a whole number, then lim
x→−∞

xn =

{
∞ if n is even
−∞ if n is odd

.

• If f(x) =
anx

n + an−1x
n−1 + . . .+ a0

bmxm + bm−1xm−1 + . . .+m0
with an 6= 0 and bm 6= 0, then lim

x→±∞
f(x) =

an
bm

lim
x→±∞

xn−m.

• A horizontal line y = L is a horizontal asymptote if lim
x→∞

f(x) = L and/or

lim
x→−∞

f(x) = L.

Lecture Material
Begin by defining limits at infinity and then introduce the appropriate notation. Exam-
ple 1 provides a simple graphical representation of horizontal asymptotes and limits at
infinity. Explain and illustrate Theorem 1 with graphs of various powers of x (such as
the graphs in Figure 4).

We define a horizontal asymptote to be a horizontal line y = L such that at least one of
the following is true: lim

x→∞
f(x) = L or lim

x→−∞
f(x) = L. Of course a vertical line x = L is

a vertical asymptote if f(x) has an infinite limit as x → L from either the left or the right
(or both). The main technique for evaluating infinite limits (and so finding horizontal
asymptotes) is to divide both the numerator and the denominator by the highest power
of the variable that occurs in the denominator. For rational functions, this easily leads
to Theorem 2:

lim
x→±∞

(
anx

n + an−1x
n−1 + · · ·+ a0

bmxm + bm−1xm−1 + · · ·+ b0

)

=
an
bm

lim
x→±∞

xn−m

Work Exercises 8, 11, and 16 to illustrate the use of this technique. Then work through
Examples 3 and 4 which involve roots and fractional powers.
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Discussion Topics/Class Activities
Have students work Exercise 43 at their desks.

Suggested Problems
Exercises 1, 3 (basic), 7–15 every other odd (limits), 17–21 odd (horizontal asymptotes),
23, 27, 29, 30, 34, 35, 39, 41 (harder)
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Worksheet 2.7.
Limits at Infinity

1. Evaluate the following limits.

a. lim
x→∞

4x2 − 5x+ 7

10x+ x3

b. lim
x→−∞

5x5 + 3x2 − 4x+ 7

3x5 − 4x4 + 5x2 − 9

c. lim
x→∞

4x4

2x2

d. lim
x→∞

4x2 + 9√
x7 + 6x2 − 5

e. lim
x→∞

1

x− 4
− 1

2x

f. lim
x→∞

(

ln(2x+ 5)− ln
(√

x2 + 7
))

2. Find the horizontal asymptotes
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a. y =
t2/3

2 + 5e|t|

b. y =

√
4t6 − 8t2 + 9

t3 − 8
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Solutions to Worksheet 2.7

1. Evaluate the following limits.

a. lim
x→∞

4x2 − 5x+ 7

10x+ x3
= 4 lim

x→∞
x2−3 = 0

b. lim
x→−∞

5x5 + 3x2 − 4x+ 7

3x5 − 4x4 + 5x2 − 9
=

5

3
lim

x→−∞
x5−5 =

5

3

c. lim
x→∞

4x4

2x2
=

4

2
lim
x→∞

x4

x2
= 2 lim

x→∞
x2 = ∞

d. lim
x→∞

4x2 + 9√
x7 + 6x2 − 5

Divide both numerator and denominator by x7/2, giving:

4x2 + 9√
x7 + 6x2 − 5

· x
−7/2

x−7/2
=

4x−3/2 + 9x−7/2

√
1 + 6x−5 − 5x−7

=
4

x3/2 +
9

x7/2
√

1 + 6
x5 − 5

x7

Thus, lim
x→∞

4x2 + 9√
x7 + 6x2 − 5

= lim
x→∞

4
x3/2 +

9
x7/2

√

1 + 6
x5 − 5

x7

=
0

1
= 0

e. lim
x→∞

1

x− 4
− 1

2x
= lim

x→∞

2x

2x(x− 4)
− (x− 4)

2x(x− 4)
= lim

x→∞

x+ 4

2x(x− 4)
=

1

2
lim
x→∞

x1−2 = 0

f. lim
x→∞

(

ln(2x+ 5)− ln
(√

x2 + 7
))

= lim
x→∞

ln

(
2x+ 5√
x2 + 7

)

= ln(2)

2. Find the horizontal asymptotes

a. y =
t2/3

2 + 5e|t|

Since lim
t→∞

t2/3

2 + 5e|t|
= 0 and lim

t→−∞

t2/3

2 + 5e|t|
= 0, the horiztonal asymptote is y = 0.

b. y =

√
4t6 − 8t2 + 9

t3 − 8
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To calculate, lim
t→∞

√
4t6 − 8t2 + 9

t3 − 8
, one must first divide numerator and denominator

by t3 =
√
t6.

lim
t→∞

√
4t6 − 8t2 + 9

t3 − 8
= lim

t→∞

√
4t6 − 8t2 + 9

t3 − 8
·

1√
t6

1
t3

= lim
t→∞

√

4− 8
t4
+ 9

t6

1− 8
t3

= 2

To calculate, lim
t→−∞

√
4t6 − 8t2 + 9

t3 − 8
, one must first divide numerator and denominator

by t3 = −
√
t6.

lim
t→−∞

√
4t6 − 8t2 + 9

t3 − 8
= lim

t→−∞

√
4t6 − 8t2 + 9

t3 − 8
·
− 1√

t6

1
t3

= lim
t→−∞

−
√

4− 8
t4
+ 9

t6

1− 8
t3

= −2

Therefore, the horizontal asymptopes are y = 2 and y = −2.
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2.8. Intermediate Value Theorem.

Class Time AB 1 period; BC 1/2 period. Essential.

Key Points

• Intermediate Value Theorem.

Lecture Material
If f(x) is continuous on an interval I, then the graph of f has no breaks, so the range
of f on I has no gaps. This is the content of the Intermediate Value Theorem: If f(x)
is continuous on the interval [a, b] and if L lies between f(a) and f(b), then there is a c
between a and b so that f(c) = L.

Give graphical illustrations of the theorem and examples showing that the conclusion
may fail for functions that are not continuous at every point in the interval; for example,

if f(x) =
x2 − 1

x− 1
, if x 6= 1 and f(1) = 3, then f(0) < 2 < f(2), but there is no c so that

f(c) = 2. Also consider the graph of a noncontinuous piecewise-defined function such as

f(x) =
|x− 1|
x− 1

.

Approximating solutions of equations is a long-standing important problem in math-
ematics. As a special case of the Intermediate Value Theorem, it follows that if f is
continuous and if f(a) and f(b) have different signs, then the equation f(x) = 0 has a
solution between a and b. This leads to the Bisection Method for approximating zeroes.

Illustrate the Bisection Method by approximating a solution of the equation sin(πx) =
1− x to within 10−2. The bisection method is not tested on the AP calculus exams.
Solution: Let f(x) = sin(πx) + x− 1. If x0 = 1/4 and x1 = 1/3, then f(x0) · f(x1) < 0,
and f has a zero between x0 and x1. Define x2 to be the midpoint of [x0, x1]: x2 = 7/24.
Since f(x0) · f(x2) < 0, we know that the zero of f lies in the interval [x0, x2]; set
x3 = (x0 + x2)/2 = 13/48 and test. Since f(x0) · f(x3) < 0, the solution lies in [x0, x3];
set x4 = (x0 + x3)/2 = 25/96 Finally, f(x0) · f(x4) > 0, so f(x3) · f(x4) < 0. If x5 =
(x3 + x4)/2 = 17/64, then the solution lies in [x5, x3], and since x3 − x5 ≈ 0.005 < 10−2,
the solution of sin(πx) = 1− x is x ≈ 0.27.

Discussion Topics/Class Activities
Exercises 26 and 27 are good discussion problems.

Suggested Problems
Exercises 1, 3 (basic), 6 (harder), 7, 12 (abstract)
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Worksheet 2.8.
Intermediate Value Theorem

1. Show that g(x) =
x

x+ 1
takes on the value 0.599 for some x ∈ [1, 2].

2. Show that cos θ = θ has a solution in the interval. [0, 1]

3. Using the Intermediate Value Theorem, show that f(x) = x3 − 8x − 1 has a root in

the interval [2.75, 3]. Apply the Bisection Method twice to find an interval of length
1

16
containing this root.

4. Suppose that f(x) = x+2 if x < −2 and that f(x) =
1

2
x+3 if x ≥ −2. Show that there

does not exist a number c such that f(c) = 1.
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Solutions to Worksheet 2.8

1. Show that g(x) =
x

x+ 1
takes on the value 0.599 for some x ∈ [1, 2].

g is continuous on [1, 2] and g(2) =
1

2
< .599 <

2

3
= g(2). The Intermediate Value

Theorem thus implies that .599 = g(c) for some c in (1, 2).

2. Show that cos θ = θ has a solution in the interval [0, 1].
f(θ) = cos θ − θ is continuous on [0, 1] with f(0) > 0 and f(1) = cos(1)− 1 < 0. The

Intermediate Value Theorem applies.

3. Using the Intermediate Value Theorem, show that f(x) = x3 − 8x − 1 has a root in

the interval [2.75, 3]. Apply the Bisection Method twice to find an interval of length
1

16
containing this root.

x 11/4 45/16 23/8 47/16 3

f(x) < 0 < 0 < 0 > 0 > 0

Since the sign of f changes between x =
23

8
and x =

47

16
, the function f has a root in

the interval

(
23

8
,
47

16

)

.

4. Suppose that f(x) = x+2 if x < −2 and that f(x) =
1

2
x+3 if x ≥ −2. Show that there

does not exist a number c such that f(c) = 1.
f has range (−∞, 0) ∪ [2,∞).
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2.9. The Formal Definition of a Limit.

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Point

• Formal (ε-δ) definition of a limit.

Lecture Material
lim
x→c

f(x) = L provided that for every ε > 0, there is a positive number δ so that if

0 < |x− c| < δ then |f(x)− L| < ε. If students find the classical notation intimidating,
rephrase the definition in terms of powers of 10 as in the text. Illustrate the definition
graphically as in Figure 4.

If f(x) = 3x − 5, ask students, “How close must x be to 2 to ensure that the error
|f(x)− 1| is less than 10−4?” and illustrate the problem as in Figure 1.

To construct a formal proof that lim
x−c

f(x) = L, the text suggests a general strategy:

Step 1. Express the gap |f(x)− L| in terms of the difference |x− c|.
Step 2. Choose δ (or 10−m) in terms of ε (10−n) (and also perhaps c).

Apply this strategy to limits as in Examples 1–3. Another example: Show that
lim
x→1

√
x = 1.

Step 1. |
√
x − 1| = |(√x− 1)(

√
x+ 1)|√

x+ 1
=

|x− 1|√
x+ 1

≤ |x − 1| since
√
x + 1 ≥ 1 for all

x ≥ 0.
Step 2. Given an arbitrary ε > 0, let δ = min{1, ε}. Then, from the estimate in Step 1,
0 < |x− 1| < δ implies that |

√
x− 1| < ε.

Discussion Topics/Class Activities

Negate the definition of the limit and use the negation to show that lim
x→0

x

|x| and lim
x→0

sin
1

x
do not exist. The lim

x→a
f(x) 6= L if and only if there exists ǫ > 0 such that for every

δ > 0, |f(x)− L| ≥ ǫ whenever |x− a| < δ.

Suggested Problems
Exercises 1, 2 (basic), 4, 5 (harder), 6, 7, 9 (graphing calculator), 12 (graphical), 14
(numerical), 18, 27 (abstract)
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Worksheet 2.9.
The Formal Definition of a Limit

1. Suppose f(x) = 3x− 5. How close must x be to 2 to ensure that the error |f(x)− 1| is
less than 10−4?

2. Find a number δ such that |x2 − 4| is less than 10−4 if 0 < |x− 2| < δ.

3. Prove rigorously that lim
x→0

x sin
1

x
= 0.

4. Prove rigorously that lim
x→2

1

x2
=

1

4
.

5. Using the negation of the definition of the limit, prove that lim
x→0

x

|x| does not exist.

6. Using the negation of the definition of the limit, prove that lim
x→0

sin
1

x
does not exist.
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Solutions to Worksheet 2.9

1. Suppose f(x) = 3x− 5. How close must x be to 2 to ensure that the error |f(x)− 1| is
less than 10−4?

|f(x)− 1| = |(3x− 5)− 1| = 3|x− 2| < 10−4 ⇔ |x− 2| < 1

3
10−4

2. Find a number δ such that |x2 − 4| is less than 10−4 if 0 < |x− 2| < δ.
If δ > 0 and |x− 2| < δ, then

|x2 − 4| = |x− 2| |(x− 2) + 4| < |x− 2|(|x− 2|+ 4) < δ(δ + 4)

Any positive δ <
4 10−4

1− 104
=

4

9999
≈ 0.00040004 will work.

3. Prove rigorously that lim
x→0

x sin
1

x
= 0.

Let ε > 0 and let δ = ε. Then for every x such that 0 < |x− 0| < δ,
∣
∣
∣
∣
x sin

1

x
− 0

∣
∣
∣
∣
≤ |x| < ε

4. Prove rigorously that lim
x→2

1

x2
=

1

4
.

Let ε > 0 and choose δ such that 0 < δ < min{4/5ε, 1}. If 0 < |x− 2| < δ, then δ < 1
implies that 1 < x < 3, so

∣
∣
∣
∣

1

x2
− 1

4

∣
∣
∣
∣
=

|x− 2| |x+ 2|
4x2

≤ |x− 2|(3 + 2)

4
<

5

4
δ ≤ ε

5. Using the negation of the definition of the limit, prove that lim
x→0

x

|x| does not exist.
lim
x→0

f(x) does not exist provided that for every number L there exists an ε > 0 such

that for every δ > 0 there is an x satisfying 0 < |x| < δ and |f(x)− L| ≥ ε.

Let f(x) =
x

|x| for x 6= 0 and fix a number L. If |L| 6= 1, then |f(x)− L| > |1− |L||
2

for all x 6= 0. If L = ±1, and δ > 0, choose n so that 10−n < δ. Then one of the two
numbers x1 = 10−n, x2 = −10−n satisfies |f(x)− L| > 1.
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6. Using the negation of the definition of the limit, prove that lim
x→0

sin
1

x
does not exist.

Let xn =
1

nπ
and yn =

2

(4n+ 1)π
. Then 0 6= xn → 0 and 0 6= yn → 0 as n → ∞, but

sin
1

xn

= 0 and sin
1

yn
= 1 for every n.
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Chapter 2 AP Problems

1. Find the instantaneous rate of change at the point indicated. f(x) = 2
√
x at x = 4.

A. 0

B.
1

4

C.
1

2

D. 4

E. 8

2. lim
x→1

|x− 1|
x− 1

=

A. −1

B. 0

C. 1

D. x− 1

E. undefined
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3. lim
x→0

sin(x+ π
2
)− 1

x
=

A. −1

B. 0

C. 1

D.
π

2

E. undefined

4. Let f(x) =

{

x− 3 if x ≤ 2

2x+ 1 if x > 2
Which of the following statements are true about f?

I. f(2) exists
II. f is continuous at 2
III. lim

x→2
f(x) exists

A. I only

B. II only

C. III only

D. I and II only

E. I, II, and III



78

5. lim
x→∞

x4 − 3x2 − 2x+ 5

3x4 − 3x2 + 3x− 1
=

A. −2

3

B. 0

C.
1

3

D. 1

E. 3

6. lim
x→0

sin 3x

x
=

A. −3

B. 0

C. 1

D. 3

E. does not exist
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Solutions to Chapter 2 AP Problems

1. Find the instantaneous rate of change at the point indicated. f(x) = 2
√
x at x = 4.

A. 0

B.
1

4

C.
1

2

D. 4

E. 8

C [THIS QUESTION CORRESPONDS WITH SECTION 2.1]

2. lim
x→1

|x− 1|
x− 1

=

A. −1

B. 0

C. 1

D. x− 1

E. undefined

E [THIS QUESTION CORRESPONDS WITH SECTION 2.2]
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3. lim
x→0

sin(x+ π
2
)− 1

x
=

A. −1

B. 0

C. 1

D.
π

2

E. undefined

B [THIS QUESTION CORRESPONDS WITH SECTION 2.3]

4. Let f(x) =

{

x− 3 if x ≤ 2

2x+ 1 if x > 2
Which of the following statements are true about f?

I. f(2) exists
II. f is continuous at 2
III. lim

x→2
f(x) exists

A. I only

B. II only

C. III only

D. I and II only

E. I, II, and III

A [THIS QUESTION CORRESPONDS WITH SECTION 2.4]
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5. lim
x→∞

x4 − 3x2 − 2x+ 5

3x4 − 3x2 + 3x− 1
=

A. −2

3

B. 0

C.
1

3

D. 1

E. 3

C [THIS QUESTION CORRESPONDS WITH SECTION 2.5]

6. lim
x→0

sin 3x

x
=

A. −3

B. 0

C. 1

D. 3

E. does not exist

D [THIS QUESTION CORRESPONDS WITH SECTION 2.6]





83

Ray Cannon’s Chapter 3 Overview

Section 3.1 opens with a definition central to AP Calculus. Chapter 2 showed us that
the same limit is used in geometry to compute the slope of a tangent line and in physics
to compute instantaneous velocity. One of the glories of mathematics, as well as a feature
that makes it difficult, is that when the same mathematics is used to solve two different
problems, mathematicians like to abstract the machinery used from the application. This
leads us to the notion of the derivative as a purely mathematical idea, and students should
be able to use the definition in both its forms. Section 3.2 then makes the transition to
the fact that the derivative can be computed for various values, and starts the treatment
of the derivative of a function as another function. Section 3.2 also includes some “rules”
for computing derivatives. By including the derivative of the exponential function as
contrasted to the power rule, the text makes clear that not all derivatives follow the
same rule. This section also includes the theorem that differentiability implies continuity
with an example to show the converse is not true. This is a long and important section
and probably should not be covered in just one day.

Section 3.3 continues developing computational rules (product and quotient). It should
also be noted that by stating the rule, we are also saying, for example, that the product
of differentiable functions is differentiable. Students tend to overlook this aspect of the
theorem, and they should not. Sec 3.4 reinforces the conceptual idea that the derivative
is the instantaneous rate of change for any application. AP students in particular need to
have a command of the section on linear motion and familiarity with the terms velocity,
speed, and acceleration. Section 3.5 develops the idea of higher order derivatives and
makes the identification of acceleration with the second derivative of the position function.
The second derivative also offers insight into how the graph is bending. The development
of the techniques of differentiation must include general rules about how to combine
functions, and also specific examples for a particular class of functions. Section 3.6 shows
how to compute the derivatives of the trigonometric functions. Here the important limit

lim
x→0

sin x

x
= 1 is used; AP students need to know this limit.

Section 3.7 introduces the chain rule, which is extremely important. Section 3.8 shows
how to compute the derivative of inverse functions, with the particular applications to
the inverse trig functions; pay special attention to the inverse-sine and inverse-tangent.
The same ideas are used in Section 3.9 to produce the derivative of lnx. This is a difficult
derivative for students to use correctly with the chain rule, and so they may need lots of
practice. There is always a question on the AP exam dealing with implicit differentiation,
so Section 3.10 must be dealt with carefully. Many students do not use the chain rule
correctly with implicitly defined functions.

AP students are not responsible for knowledge of the hyperbolic trig functions, so you
need not cover those functions if time and pacing are a problem. Section 3.11 covers
related rates, again a topic that is always on the AP exam. The language of rates of
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change and correct use of the chain rule, as in Section 3.7, are very important in this
section, and both must be mastered.
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3. Differentiation

3.1. Definition of the Derivative.

Class Time AB 2 periods; BC 1–2 periods. Essential.

Key Points

• The definition of the derivative at a:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

x→a

f(x)− f(a)

x− a

• The equation of the tangent line at a point (a, f(a)) on the function:

y = f(a) + f ′(a)(x− a)

• The derivative is the slope of the tangent line.
• The derivative is the instantaneous rate of change.
• Notations for the derivative.
• The derivative of a linear and constant function.
• Estimating the derivative.

Lecture Material
Begin the lecture by reminding students of the motivational material given in Section 2.1
concerning the relationship between the slope of the secant line between two points P
and Q and and the slope of the tangent line at P . Illustrate this relationship graphically
using the slide provided, or illustrate using graphing or dynamic geometry software. If

y = f(x), then the slope of the secant line between (a, f(a)) and (x, f(x)) is
f(x)− f(a)

x− a
.

If we take the limit as x goes to a, we get the slope of the tangent line at x = a. This
is also the instantaneous rate of change of f at x = a. If this limit exists, we call it the
derivative of f at x = a. The notation f ′(a) needs to be introduced and then the other
formula for the derivative needs to be derived by letting x = a+h where h 6= 0. Then at
least two examples of finding the derivative at a point should be shown in class, perhaps

a quadratic function and f(x) =
1

x
.

Next derive the equation of the tangent line using the point-slope formula for the line,
and then illustrate it using one of the examples used earlier.

Finally, the instructor should state and prove Theorem 1 involving linear and constant
functions.

Show students how to find the value of a derivative at a point on their graphing
calculator.



86

Discussion Topics/Class Activities
Have students discuss examples similar to Examples 5 and 6 in the text. For Example 5,

the students could fill in a table like table 1, but for cos x at
π

6
. Discuss how Example 6

changes when using cosx instead of sin x. Illustrate using graphing or dynamic geometry
software.

Suggested Problems (spread over 2 assignments)
Exercises 3, 5, 6, 7-14, 35, 47, 49, 51, 58, 72 (See Equation 4, p. 128), 73



87

Worksheet 3.1.
Definition of the Derivative

1. Given that f(x) = 3x2 + 2x, use the definition of the derivative to find f ′(−1).

2. Given that f(x) =
1

x
, use the definition of the derivative to find f ′(2) and then find the

equation of the tangent line at x = 2.

3. Given that f(t) =
√
1 + t, use the definition of the derivative to find f ′(0) and then find

the equation of the tangent line at x = 0. Draw the graph of f(t) on the interval [−1, 1]
and on this graph draw the tangent line at x = 0.

-1 -0.5 0.5 1

1
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Solutions to Worksheet 3.1

1. Given that f(x) = 3x2 + 2x, use the definition of the derivative to find f ′(−1).
Let f(x) = 3x2 + 2x. Then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

3(x+ h)2 + 2(x+ h)− (3x2 + 2x)

h

= lim
h→0

3x2 + 6xh+ 3h2 + 2x+ 2h− 3x2 − 2x

h

= lim
h→0

3h2 + 6xh+ 2h

h
= lim

h→0
(3h+ 6x+ 2) = 6x+ 2

Note f ′(−1) = 6(−1) + 2 = −4 and f(−1) = 1. The tangent line at a = −1 is therefore

y = f ′(−1)(x+ 1) + f(−1) = −4(x+ 1) + 1 = −4x− 3.

2. Given that f(x) =
1

x
, use the definition of the derivative to find f ′(3) and then find the

equation of the tangent line at x = 3.
Let f(x) = x−1. Then

f ′(3) = lim
h→0

f(3 + h)− f(3)

h

= lim
h→0

1
3+h

−
(
1
3

)

h
= lim

h→0

3−3−h
3(3+h)

h

= lim
h→0

−h

(9 + 3h)h
= −1

9

The tangent at a = 3 is

y = f ′(3)(x− 3) + f(3) =

(
1

3

)

−
(
1

9

)

(x− 3).
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3. Given that f(t) =
√
1 + t, use the definition of the derivative to find f ′(0) and then find

the equation of the tangent line at x = 0. Draw the graph of f(t) on the interval [−1, 1]
and on this graph draw the tangent line at x = 0.

Let f(t) =
√
t + 1. Then

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

√
h+ 1−

√
1

h

= lim
h→0

√
h+ 1− 1

h
·
√
h+ 1 + 1√
h+ 1 + 1

= lim
h→0

h

h(
√
h+ 1 + 1)

= lim
h→0

1√
h+ 1 + 1

=
1

2
.

The tangent line at a = 0 is

y = f(0) + f ′(0)(x− 0) = 1 +
1

2
(x− 0) = 1 +

x

2
.
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3.2. The Derivative as a Function.

Class Time AB 2 periods; BC 1–2 periods. Essential.

Key Points

• The derivative is a function of x with its own domain and range.
• Leibniz notation for the derivative.
• The Power Rule.
• The Sum and Constant Multiple Rule.
• Differentiability implies continuity.

• d

dx
ex = ex.

• Relationship between f and f ′.

Lecture Material
Begin by restating the definition of the derivative of a function at x = a, and then
replace a with x. Next calculate f ′(x) for f(x) =

√
x, and note that the domain of f ′(x)

is smaller than the domain of f(x).
Then introduce Leibniz notation and differentials.
Next state the Power Rule. It can be proved for n any positive integer or for a specific

n, such as n = 3. It should be mentioned that the Power Rule applies for n equal to any
real number, but we aren’t in a position to prove it yet.

Develop
d

dx
ex = ex.

Now state Theorem 2 and prove at least the Sum Rule. Do an example that combines
Theorems 1 and 2. Finally, state and prove Theorem 3 and illustrate that the converse is
not true, using the example of f(x) = |x|. Disciss vertical tangents (Example 10). Stress
graphical insight (p. 137) and local linearity.

Discussion Topics/Class Activities
Have students discuss the relationship between the sign of the first derivative and whether
the function is increasing or decreasing (Examples 5, 6). Graph f(x) = 2x3 + 3x2 − 36x
using a graphing calculator and decide where the function is increasing and decreasing.
Then graph the derivative and decide where it is positive and negative.

Suggested Problems (spread over 2 assignments)
Exercises 3, 5, 7, 9, 21, 23, 25, 29, 33, 43, 45, 46, 51, 53, 66, 88 (see note above Exercise
85)
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Worksheet 3.2.
The Derivative as a Function

1. Suppose that f(x) =
√
x. Find the domain and range of f and graph it. Using the

definition of the derivative, find f ′(x) at x. Find its domain and range and graph it
together with f(x).

2 4 6 8

0.5

1

1.5

2

2.5

3

3.5

4

2. Using the derivative formulas, find the derivative of the following functions.

a. g(z) = 7z−3 + z2 + 5.

b. f(x) = 4
√
x+ 3

√
x

c. P (z) = (3z − 1)(2z + 1)

3. Find the equation of the tangent line to f(x) =

√
x+ 1

x
at x = 16.
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Solutions to Worksheet 3.2

1. Suppose f(x) =
√
x. Find the domain and range of f and graph it. Using the definition

of the derivative, find f ′(x) at x. Find its domain and range and graph it together with
f(x).

The domain of f is {x : x ≥ 0}. The range of f is {z : z ≥ 0} f ′(x) =
2

x
√
x
Its domain

is {x : x > 0} and its range is {z : z ≥ 0}.

2 4 6 8

0.5

1

1.5

2

2.5

3

3.5

4

y= f ’HxL

y= f HxL

2. Using the derivative formulas, find the derivative of the following functions.

a. g(z) = 7z−3 + z2 + 5.
d

dz

(
7z−3 + z2 + 5

)
= 2z − 21z−4

b. f(x) = 4
√
x+ 3

√
x

f(s) = 4
√
s+ 3

√
s = s

1

4 + s
1

3 . In this form, we can apply the sum and power rules.

f ′(s) =
1

4
(s

1

4
−1) +

1

3
(s

1

3
−1) =

1

4
s−

3

4 +
1

3
s−

2

3

.

c. P (z) = (3z − 1)(2z + 1)
d

dz
((3z − 1)(2z + 1)) =

d

dz

(
6z2 + z − 1

)
= 12z + 1.

3. Find the equation of the tangent line to f(x) =

√
x+ 1

x
at x = 16.

With y =
x1/2 + 1

x
= x−1/2 + x−1, we have y′ = −1

2
x−3/2 − x−2. Therefore,

y′(16) = −1

2
(16)−3/2 − 16−2 = − 3

256
.

Thus the equation of the tangent line is y =
−3

256
x− −2

16
.
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3.3. The Product and Quotient Rules.

Class Time AB 1 period; BC 1 period. Essential.

Key Points

• The Product Rule

(fg)′(x) = f ′(x)g(x) + f(x)g′(x)

• The Quotient Rule
(
f

g

)′
(x) =

g(x)f ′(x)− f(x)g′(x)

(g(x))2

Lecture Material
State the Product and Quotient rules. Emphasize that the derivative of a product is
not the product of the derivatives and likewise with the quotient. Then do at least one
example of each rule. End with an example like f(x) = (3x + 1)(x2 + 2x), where first
the Product Rule is used to take the derivative and then the function is rewritten by
multiplying the two factors, and the Power Rule is used to take the derivative. Show
that the results are the same.

Discussion Topics/Class Activities
Have students graph f(x) = 2x + 1, g(x) = x2, and f(x)g(x) = 2x3 + x2 and estimate
the slopes of the tangent lines at x = 1 to see that (fg)′(1) 6= f ′(1)g′(1).

Suggested Problems
Exercises 1, 3, 7, 9, 13, 15 (assign more if more practice is needed), 52, 62 (proof of the
quotient rule)



94

Worksheet 3.3.
The Product and Quotient Rules

1. Using the Product Rule, find the derivative of f(x) =
√
x(1− x4).

2. Using the Quotient Rule, find the derivative of f(x) =
x+ 4

x2 + x+ 1
.

3. Find the equation of the tangent line to f(x) =
x2

√
x+ x

at x = 9.
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Solutions to Worksheet 3.3

1. Using the product rule find the derivative of f(x) =
√
x(1− x4)

Let f(x) =
√
x(1− x4). Then

f ′(x) =

(
d

dx

√
x

)

(1− x4) +
√
x
d

dx
(1− x4)

=

(
1

2

)

x−1/2(1− x4) +
√
x(−4x3) =

(
1

2

)

x−1/2 −
(
9

2

)

x7/2.

2. Using the quotient rule find the derivative of f(x) =
x+ 4

x2 + x+ 1

Let f(x) =
x+ 4

x2 + x+ 1
Then

f ′(x) =
(x2 + x+ 1) d

dx
(x+ 4)− (x+ 4) d

dx
(x2 + x+ 1)

(x2 + x+ 1)2

=
(x2 + x+ 1)− (x+ 4)(2x+ 1)

(x2 + x+ 1)2
=

−x2 − 8x− 3

(x2 + x+ 1)2
.

3. Find the equation of the tangent line to f(x) =
x2

√
x+ x

at x = 9.

Let w(z) =
z2√
z + z

. Then

dw

dz
=

(
√
z + z) d

dz
z2 − z2 d

dz
(
√
z + z)

(
√
z + z)2

=
2z(

√
z + z)− z2((1/2)z−1/2 + 1)

(
√
z + z)2

=
(3/2)z3/2 + z2

(
√
z + z)2

.

Therefore,
dw

dz

∣
∣
∣
∣
z=9

=
(3/2)(9)3/2 + 92

(
√
9 + 9)2

=
27

32
.

So the equation of the tangent line is y =
27

32
x− 27

32
.
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3.4. Rates of Change.

Class Time AB 1 period; BC 1 period. Essential.

Key Points

• The average rate of change of a function over an interval:

Average ROC =
∆y

∆x
=

f(x1)− f(x0)

x1 − x0

• The instantaneous rate of change of a function at a point:

Instantaneous ROC at x0 = f ′(x0) = lim
∆x→0

∆y

∆x
= lim

x1→x0

f(x1)− f(x0)

x1 − x0

• The marginal cost:

C(x0 + 1)− C(x0) ≈ C ′(x0)

• The position and velocity functions of an object tossed vertically with no air
resistance:

s(t) = s0 + v0t−
1

2
gt2, v(t) = v0 − gt

where g is 32 ft/s2 or 9.8 m/s2, s0 is initial position, and v0 is initial velocity.

Lecture Material
Define the average rate of change of a function over an interval and the instantaneous
rate of change of the function at a point. Be sure students understand the difference
between the average and instantaneous rate of change, and that the instantaneous rate
of change is the limit of the average rate of change. Then discuss Example 1 using the
slide provided.

If time permits, discuss marginal cost. This is the average rate of change of the cost
function over an interval of 1. It can be approximated by the derivative of the cost
function. Marginal cost is not tested on the AP Calculus exams.

Galileo discovered that the height s(t) and the velocity v(t) of an object tossed verti-

cally when air resistance is negligible are s(t) = s0+ v0t−
1

2
gt2 and v(t) = v0− gt, where

g is 32 ft/s2 or 9.8 m/s2, s0 is initial position, and v0 is initial velocity. You can derive
these formulas by starting with the acceleration due to gravity g and antidifferentiating
twice and solving for the integration constants. Work Example 6.

Discussion Topics/Class Activities
Have students work Exercise 18. Provide guidance.
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The AP exams almost always include problems concerning particles moving on a line
(AB) or in the plane (BC). Do a problem like Exercise 22 (same as Worksheet 3.4 #3)
to begin work on this type of problem. This will be continued in later chapters.

Suggested Problems
Exercises 1, 2, 5, 9, 10, 11, 30
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Worksheet 3.4.
Rates of Change

1. The population P (t) of Freedonia in 1933 was P (1933) = 5 million.

a. What is the meaning of P ′(1933)?

b. Estimate P (1934) if P ′(1933) = .2. What if P ′(1933) = 0?

2. Find the rate of change of the volume of a cube with respect to the length of its side s
when s = 3 and s = 5.

3. The height in feet of a helicopter at time t in minutes is s(t) = −3t3+400t for 0 ≤ t ≤ 10.

a. Plot the graphs of height s(t) and velocity v(t).

2 4 6 8 10 12
x

y

b. Find the velocity at t = 6 and t = 7.

c. Find the maximum height of the helicopter.
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4. It takes a stone 3 seconds to hit the ground when dropped from the top of a building.
How high is the building and what is the stone’s velocity on impact?

5. The demand for a commodity generally decreases as the price is raised. Suppose that

the demand for oil (per capita per year) is D(p) =
900

p
barrels where p is the price per

barrel in dollars. Find the demand when p = $40. Estimate the decrease in demand if p
is raised to $41 and the increase if p is decreased to $39.
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Solutions to Worksheet 3.4

1. The population P (t) of Freedonia in 1933 was P (1933) = 5 million.

a. What is the meaning of P ′(1933)?
Because P (t) measures the population of Freedonia as a function of time, the derivative

P ′(1933) measures the rate of change of the population of Freedonia in the year 1933.

b. Estimate P (1934) if P ′(1933) = .2. What if P ′(1933) = 0?
P (1934) ≈ P (1933) + P ′(1933). Thus, if P ′(1933) = 0.2, then P (1934) ≈ 5.2 million.

On the other hand, if P ′(1933) = 0, then P (1934) ≈ 5 million.

2. Find the rate of change of the volume of a cube with respect to the length of its side s
when s = 3 and s = 5.

Let the area be A = f(s) = s2. Then the rate of change of A with respect to s is
A′(s) = 2s. When s = 3, the area changes at a rate of 6 square units per unit increase.
When s = 5, the area changes at a rate of 10 square units per unit increase.

3. The height in feet of a helicopter at time t in minutes is s(t) = −3t3+400t for 0 ≤ t ≤ 10.

a. Plot the graphs of height s(t) and velocity v(t).
The height is s(t) = 400t− 3t3 and velocity is v(t) = s′(t) = 400− 9t2.

b. Find the velocity at t = 6 and t = 7.
We have v(6) = 76 ft/min and v(7) = −41 ft/min.

c. Find the maximum height of the helicopter.
The maximum height of the helicopter occurs when v(t) = 0. When v(t) = 400−9t2 =

0, we have t = ±20

3
. Discarding the negative time (which occurred before measurements

started) leaves t =
20

3
≈ 6.67 min. At this time the height is s(

20

3
) = 16000/9 ≈ 1777.78

ft.

4. It takes a stone 3 seconds to hit the ground when dropped from the top of a building.
How high is the building and what is the stone’s velocity upon impact?

Galileo’s formula gives s(t) = s0+v0t−
1

2
gt2 = s0−4.9t2, where the time t is in seconds

(s) and the height s is in meters (m). When the ball hits the ground after 3 seconds its
height is 0. Solve 0 = s(3) = s0 − 4.9(3)2 to obtain s0 = 44.1 m. The velocity at impact
is v(3) = −9.8t|t=3 = −29.4 m/s.
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5. The demand for a commodity generally decreases as the price is raised. Suppose that the

demand for oil (per capita per year) is D(p) =
900

p
barrels where p is the price per barrel

in dollars. find the demand when p = 40 dollars. Estimate the decrease in demand if p
is raised to 41 dollars and the increase if p is decreased to 39 dollars.

D(p) = 900p−1, so D′(p) = −900p−2. When the price is $40 per barrel, the per capita
demand is D(40) = 22.5 barrels per year. With an increase in price from $40 to $41 per
barrel, the change in demand D(41)− D(40) is approximately D′(40) = −900(40−2) =
−.5625 barrels per year. With a decrease in price from $40 to $39 per barrel, the change
in demand D(39)−D(40) is approximately −D′(40) = +.5625. An increase in oil prices
of $1 leads to a decrease in demand of .5625 barrels per year, and a decrease of $1 leads
to an increase in demand of .5625 barrels per year.
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3.5. Higher Derivatives.

Class Time 1 period. Essential

Key Points

• Higher derivatives.
• Notations for higher derivatives.

Lecture Material
Discuss what is meant by higher derivatives and explain Leibnitz notation for higher
derivatives. Do a couple of examples, and explain that for polynomials of degree n, the
(n + 1)st derivative is 0. As an application of the second derivative, talk about the
acceleration of an object tossed vertically in the air. Finally, use the slide provided to
show the relationship between the behavior of the first derivative and the sign of the
second derivative. Show students how to find the numerical value of higher derivatives
on their graphing calculators and/or how to find the higher order derivative on their
CAS.

Discussion Topics/Class Activities
Use preliminary Questions 1 & 2 (p. 140) to explain the meaning of second derivatives in
practical settings. Do variations on Exercises 35 and 36 where students emphasize how
the shapes of f ′ and f ′′ give information about the graph of f .

Suggested Problems
Exercises 1, 3, 9, 11, 15, 17, 29, 39, 40, 41, 51
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Worksheet 3.5.
Higher Derivatives

1. Calculate the second and third derivatives of y =
√
x.

2. Find
d2

dt2

(
1

t3 + 1

)

.

3. Find where the second derivative of F (x) =
x2

x− 3
is 0.

4. Find a general formula for f (n)(x) if f(x) = x−2.
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Solutions to Worksheet 3.5

1. Calculate the second and third derivatives of y =
√
x.

Let y =
√
x = x

1

2 . Then y′ =
1

2
x− 1

2 , y′′ = −1

4
x− 3

2 , and y′′′ =
3

8
x− 5

2 .

2. Find
d2

dt2

(
1

t3 + 1

)

.

Let

f(t) =
1

t3 + 1
.

Then

f ′(t) =
0− 3t2

(t3 + 1)2
.

In order to find f ′′(t), we will have to take the derivative of
(
t3 + 1

)2
= (t3 + 1)(t3 + 1).

We will use the product rule:

d

dt
(t3 + 1)(t3 + 1) = 3t2(t3 + 1) + 3t2(t3 + 1) = 6t2(t3 + 1).

Applying this derivative inside the quotient rule we are about to take, we get

f ′′(t) =
(t3 + 1)2(−6t) + 3t2(6t2(t3 + 1))

(t3 + 1)4

=
(t3 + 1)((t3 + 1)(−6t) + 18t4)

(t3 + 1)4

=
12t4 − 6t

(t3 + 1)3

3. Find F ′′(2) if F (x) =
x2

x− 3
is 0.

From the quotient rule,

F ′(x) =
(x− 3)2x− (x2)(1)

(x− 3)2
=

x2 − 6x

(x− 3)2
.

To take the second derivative, we need the derivative of (x− 3)2. Using the product rule
applied to (x− 3)2 = (x− 3)(x− 3), we get:

(x− 3)1 + (x− 3)1 = 2(x− 3).

Let F ′(x) = (f(x)/g(x)), where f(x) = x2 − 6x and g(x) = (x− 3)2. f ′(x) = 2x− 6 and
g′(x) = 2(x− 3). From the quotient rule:

F ′′(2) =
g(2)f ′(2)− f(2)g′(2)

g(2)2
.
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We compute f(2) = −8, g(2) = 1, f ′(2) = −2 and g′(2) = −2. Hence

F ′′(2) =
1(−2)− (−8)(−2)

12
= −18

4. Find a general formula for f (n)(x) if f(x) = x−2.
f ′(x) = −2x−3, f ′′(x) = 6x−4, f ′′′(x) = −24x−5, f (4)(x) = 5 · 24x−6, . . . . We can

conclude that the nth derivative can be written as f (n)(x) = (−1)n(n + 1)!x−(n+2).
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3.6. Trigonometric Functions.

Class Time 1 period. Essential.

Key Points

• (sin x)′ = cosx
• (cosx)′ = − sin x
• (tanx)′ = sec2 x
• (cotx)′ = − csc2 x
• (sec x)′ = sec x tan x
• (csc x)′ = − csc x cot x

Lecture Material
First prove that the derivative of sin x is cosx, and then say that a similar argument
shows that the derivative of cosx is − sin x. From there, give the derivatives for the rest
of the trigonometric functions and derive one or two of them using the Quotient Rule.
Then do Example 3.

Discussion Topics/Class Activities
Using a graphing calculator, compare the graphs of y = sec x and its derivative y′ =

sec x tanx on the interval [−π

2
,
3π

2
].

Suggested Problems
Exercises 1, 3, 5, 7, 9, 11, 25, 31, 35, 37, 43, 47, 56
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Worksheet 3.6.
Trigonometric Functions

1. Find the derivative of f(x) = x2 cosx.

2. Find the equation of the tangent line to g(θ) =
θ

cos θ
at θ = 0.

-1 -0.5 0.5 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

3. Find the second derivative of f(x) = tanx.

4. Find points at which f(x) = cos2 x has a horizontal tangent line.
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Solutions to Worksheet 3.6

1. Find the derivative of f(x) = x2 cosx.
Let f(x) = x2 cosx. Then

f ′(x) = x2 (− sin x) + (cosx) (2x) = 2x cosx− x2 sin x.

2. Find the equation of the tangent line to g(θ) =
θ

cos θ
at θ = 0.

Let g(θ) = θ/ cos θ = θ sec θ. Then g′(θ) = θ sec θ tan θ + sec θ. Since g(0) = 0 and
g′(0) = 1 the equation of the tangent line is y = θ.

3. Find the second derivative of f(x) = tanx.
Let f(x) = tanx. Then f ′(x) = sec2 x = sec x sec x and

f ′′(x) = sec x(sec x tan x) + sec x(sec x tan x)

= 2(sec x)(sec x tanx) = 2 sec2 x tanx.

4. Find points at which f(x) = cos2 x has a horizontal tangent line.
Writing f as (cos x)(cosx) and using the product rule, we have f ′(x) = −2 cosx sin x.

Then f ′(x) = 0 if cos x = 0 or sin x = 0. This happens at x =
(2n+ 1)π

2
and at x = nπ

for all integers n.



109

3.7. The Chain Rule.

Class Time 1 period. Essential.

Key Points

• Chain Rule:
(f ◦ g)′(x) = f ′(g(x))g′(x)

• General Power Rule:

((u(x))n)′ = n(u(x))n−1u′(x) for n any real number

Lecture Material
State the Chain Rule and do several examples including examples using trigonometric
functions. If time permits, prove the Chain Rule. Discuss examples of the General Power
Rule.

Do Example 4 to foreshadow related rates problems.

Discussion Topics/Class Activities
Have students discuss the salary illustration given in the conceptual insight paragraph
in this section.

Suggested Problems
Exercises 3, 5, 11, 13, 15, 17, 19, 25, 27, 35, 37, 45 (assign additional exercises as needed)
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Worksheet 3.7.
The Chain Rule

1. Find the derivative of f(x) = (7x− 9)5.

2. Use the Chain Rule to find the derivative of f(t) = sin2 t.

3. Find the derivative of f(x) =

√
x+ 1

x+ 2
.

4. Find the equation of the tangent line to f(θ) = sin(cos θ) at θ =
π

2
.

Π

����

2

-0.75

-0.5

-0.25

0.25

0.5

0.75

5. Find the points at which f(x) =

(
x+ 1

x− 1

)4

has a horizontal horizontal tangent line.
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Solutions to Worksheet 3.7

1. Find the derivative of f(x) = (7x− 9)5

Let g(x) = 7x− 9. We apply the General Power Rule.

d

dx
g(x)5 =

d

dx
(7x− 9)5 = 5(7x− 9)4(7) = 35(7x− 9)4.

Alternately, let f(x) = x5 and apply the Shifting and Scaling Rule. Then

d

dx
f(7x− 9) =

d

dx
(7x− 9)5 = 7(5(7x− 9)4) = 35(7x− 9)4.

2. Use the Chain Rule to find the derivative of f(t) = sin2 t.
Let y = sin2 x = (sin x)2. Then y′ = 2 sin x(cosx).

3. Find the derivative of f(x) =

√
x+ 1

x+ 2
.

f ′(x) =
(x+ 2)(1

2
)(x+ 1)−1/2 − (x+ 1)1/2

(x+ 2)2
=

−x

2(x+ 1)1/2(x+ 2)2

4. Find the equation of the tangent line to f(θ) = sin(cos θ) at θ =
π

2
.

f ′(θ) = cos(cos θ)(− sin θ). Since f ′(
π

2
) = −1 and f(

π

2
) = 0, the equation of the

tangent line is y = −(x− π

2
).

5. Find the points at which f(x) =

(
x+ 1

x− 1

)4

has a horizontal tangent line.

Let y =

(
x+ 1

x− 1

)4

. Then

y′ = 4

(
x+ 1

x− 1

)3

· (x− 1) · 1− (x+ 1) · 1
(x− 1)2

= −8 (x+ 1)3

(x− 1)5
=

8(1 + x)3

(1− x)5

Thus f has a horizontal tangent line at x = −1



112

3.8. Derivatives of Inverse Functions.

Class Time AB 2 periods; BC 1–2 periods. Essential.

Key Points

• The derivative of the inverse: If f(x) is differentiable and one-to-one with inverse
g(x), then

g′(x) =
1

f ′(g(x))
• Derivative and integral formulas:

d

dx
sin−1 x =

1√
1− x2

,

∫
dx√
1− x2

= sin−1 x+ C

d

dx
cos−1 x = − 1√

1− x2
,

∫
dx√
1− x2

= − cos−1 x+ C

d

dx
tan−1 x =

1

x2 + 1
,

d

dx
cot−1 x = − 1

x2 + 1

d

dx
sec−1 x =

1

|x|
√
x2 − 1

,
d

dx
csc−1 x = − 1

|x|
√
x2 − 1

Lecture Material
Reflect the graph of f(x) and the line tangent to the graph of f(x) at (a, b), y = b +
f ′(a)(x− a), across the line y = x to obtain the graph of g(x) = f−1(x) and the tangent
line at (b, a) = (b, f−1(b)) (see Figure 1):

y − a =
1

f ′(a)
(x− b)

Extract from this Theorem 1: Assume that f(x) is differentiable and one-to-one with
inverse g(x). If b belongs to the domain of g(x) and f ′(g(b)) 6= 0, then

g′(b) =
1

f ′(g(b))
Illustrate the use of this result by working Exercise 4. Now apply Theorem 1 to the
inverse trigonometric functions to obtain the formulas for the derivatives of sin−1 x and
cos−1(x) (the other inverse trigonometric functions are handled similarly, and they can
now be simply stated). Work Exercises 25 and 27 to illustrate the use of these formulas.
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Another way to derive these formulas is to use implicit differentiation (see Section 3.10).
For example: To find the derivative of y = sin−1 x, write x = sin y. Then differentiate

implicitly and solve for
dy

dx
:

1 = cos y
dy

dx
1

cos y
=

dy

dx

1

cos(sin−1 x)
=

dy

dx

1√
1− x2

=
dy

dx

Suggested Problems
Exercises 3, 7, 11, 13, 23–37 odd
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Worksheet 3.8.
Derivatives of Inverse Functions

1. If f(x) =
√
x3 + 8, then

a. the domain of f is and the range of f is

b. Find a formula for f−1(x). What are the domain and range of f−1(x)?

2. Sketch the graph of the inverse f−1(x) for the function f(x).

-2 -1.5 -1 -0.5 0.5 1

-2.5

-2

-1.5

-1

-0.5

0.5

1
y=fHxL

y=x
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3. If f(x) = ex, sketch the graphs of f(x), −2 ≤ x ≤ 2, and the inverse f−1(x).

-2 -1 1 2 3 4 5 6

-2

-1

1

2

3

4

5

6

4. Suppose that f is an invertible function satisfying f(3) = 2 and f ′(3) = −4. If g(x) =
f−1(x), find g′(2).

5. Find g′
(

−1

2

)

if g(x) is the inverse of f(x) =
x3

x2 + 1
. (Do not try to find a formula for

f−1(x).)
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Solutions to Worksheet 3.8

1. If f(x) =
√
x3 + 8, then

a. The domain of f is domain(f) = [−2,∞), and the range of f is range(f) = [0,∞).

b. A formula is f−1(x) =
3
√
x2 − 8. The domain is domain(f−1) = [0,∞), and the range

is range(f−1) = [−2,∞).

2. Sketch the graph of the inverse f−1(x) for the function f(x).

-2 -1 1 2 3 4

-2

-1

1

2

3

4

3. If f(x) = ex, sketch the graphs of f(x), −2 ≤ x ≤ 2, and the inverse f−1(x).

-2 2 4 6

-2

2

4

6
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4. Suppose that f is an invertible function satisfying f(3) = 2 and f ′(3) = −4. If g(x) =
f−1(x), then find g′(2).

g′(2) =
1

f ′(g(2))
= −1

4

5. Find g′
(

−1

2

)

if g(x) is the inverse of f(x) =
x3

x2 + 1
.

Since f(−1) = −1

2
, g′
(

−1

2

)

=
1

f ′(−1)
=

1

2
.
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3.9. Derivatives of Exponential and Logarithmic Functions.

Class Time 1 period. Essential.

Key Points

• Derivative formulas:

d

dx
ex = ex,

d

dx
ln x =

1

x
,

d

dx
bx = (ln b)bx,

d

dx
logb x =

1

(ln b)x

The hyperbolic functions are not tested on the AB or BC exams and may be omitted.

Lecture Material

Begin by deriving the formula for the derivatives of exponential functions:
d

dx
bx =

(ln b)bx, b > 0. Then, using the differentiation formula for inverse functions from Section

3.8 (Theorem 1) derive the formula for the derivative of ln x:
d

dx
ln x =

1

x
for x > 0.

It may be useful to point out the chain rule form of this formula:
d

dx
ln(f(x)) =

f ′(x)

f(x)
.

Work Exercises 4, 16, and 18 to illustrate the use of these formulas.
Logarithmic differentiation is not tested on the AB or BC exams and may be omitted.

Discussion Topics/Class Activities
Discuss Exercise 84, which gives an alternative derivation of the product rule.

Suggested Problems
Exercises 1, 5, 9, 11, 13, 15, 17, 19, 21, 25, 31
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Worksheet 3.9.
Derivatives of Exponential and Logarithmic Functions

1. Find the derivative of y = ln(x2).

2. Find the derivative of y = ln

(
x+ 1

x3 + 1

)

.

3. Find the derivative of y = 5x
2−x.

4. Find the derivative of y = xx2

using the methods of Example 9.
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Solutions to Worksheet 3.9

1. Find the derivative of y = ln(x2)

y′ =
2

x
if x 6= 0.

2. Find the derivative of y = ln

(
x+ 1

x3 + 1

)

y′ =

(
x3 + 1

x+ 1

)(
(x3 + 1)− 3x3 − 3x2

(x3 + 1)2

)

=

(
x3 + 1

x+ 1

)(−2x3 − 3x2 + 1

(x3 + 1)2

)

=

(
x3 + 1

x+ 1

)(
(1 + x)2(1− 2x)

(x3 + 1)2

)

=
(1 + x)(1− 2x)

x3 + 1
=

(1 + x)(1− 2x)

(x+ 1)(x2 − x+ 1)
=

1− 2x

x2 − x+ 1
.

3. Find the derivative of y = 5x
2−x

y′ = ln 5(2x− 1)5x
2−x.

4. Find the derivative of y = xx2

using the methods of Example 9
First method: y(x) = xx2

= (elnx)x
2

= ex
2 lnx. Thus y′(x) = (x + 2x lnx)ex

2 lnx =

(x+ 2x lnx)xx2

.

Second method: Since ln y = x2 lnx, we have
y′(x)

y(x)
=

x2

x
+2x ln x = x+2x lnx. Thus

y′(x) = y(x+ 2x lnx) = xx2

(x+ 2x ln x).
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3.10. Implicit Differentiation.

Class Time AB 2 periods; BC 1–2 periods. Essential.

Key Points

• Implicit differentiation.
• Implicit differentiation for higher order derivatives.

Lecture Material

Begin by asking students to find
dy

dx
for x2+y2 = 1 by first solving for y and differentiating.

Then show them how to differentiate this relation implicitly and point out that the
answers are really the same. Mention and show graphically that, since there is more than
one point with the same x-coordinate, it is natural that the derivative should depend

on both x and y. Use both forms to find the slope at

(
3

5
,
4

5

)

and

(
3

5
,−4

5

)

. Then do

several more complicated examples such as y2 + 2xy = x3.
Finally, show how to find second derivatives for the same examples.

Discussion Topics/Class Activities
Put the lemniscate slide up and have students work Exercise 56. If there is time, have
students work Exercise 53.

Suggested Problems (spread over 2 assignments)
Exercises 1, 3, 6, 9, 11, 21, 25, 31, 37, 46, 55, 57, 59, 61
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Worksheet 3.10.
Implicit Differentiation

1. Find the derivative of y with respect to x if y4 − y = x3 + x.

2. Find the equation of the tangent line to the graph of x2y3 + 2y = 3x at the point (2, 1).

0 1 2 3 4

0.25

0.5

0.75

1

1.25

1.5

1.75

2



123

3. Show that there are no points on the graph of x2 − 3xy + y2 = 1 where the tangent line
is horizontal.

4. Find the equations of the tangent lines at the four points where x = 1 on the folium

(x2 + y2)2 =
25

4
xy2

.

0 0.5 1 1.5 2

-2

-1

0

1

2
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Solutions to Worksheet 3.10

1. Find the derivative of y with respect to x if y4 − y = x3 + x

d

dx
(y4 − y) =

d

dx
(x3 + x)

4y3y′ − y′ = 3x2 + 1

y′(4y3 − 1) = (3x2 + 1)

y′ =
3x2 + 1

4y3 − 1

2. Find the equation of the tangent line to the graph of x2y3 + 2y = 3x at the point (2, 1).
Taking the derivative of both sides of x2y3 + 2y = 3x yields

3x2y2y′ + 2xy3 + 2y′ = 3.

Substituting x = 2, y = 1 yields 12y′ + 4 + 2y′ = 3, and we solve:

12y′ + 4 + 2y′ = 3

14y′ = −1

y′ = − 1

14
.

Hence, the equation of the tangent line at (2, 1) is y − 1 = − 1

14
(x− 2), or y =

8

7
− 1

14
x.

3. Show that there are no points on the graph of x2 − 3xy + y2 = 1 where the tangent line
is horizontal.

Let the implicit curve x2 − 3xy + y2 = 1 be given. Then

2x− 3xy′ − 3y + 2yy′ = 0

whence

y′ =
2x− 3y

3x− 2y
= 0
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which implies y =
2

3
x. Substituting y =

2

3
x into the equation of the implicit curve gives

−5

9
x2 = 1, which has no real solutions. Accordingly, there are no points on the implicit

curve where the tangent line has slope zero.

4. Find the equations of the tangent lines at the 4 points where x = 1 on the folium

(x2 + y2)2 =
25

4
xy2

.
First, find the points (1, y) on the curve. Setting x = 1 in the equation (x2 + y2)2 =

25

4
xy2 yields

(1 + y2)2 =
25

4
y2

y4 + 2y2 + 1 =
25

4
y2

4y4 + 8y2 + 4 = 25y2

4y4 − 17y2 + 4 = 0

(4y2 − 1)(y2 − 4) = 0

y2 =
1

4
or y2 = 4

Hence y = ±1

2
or y = ±2. Taking the derivative of both sides of the original equation

yields

2(x2 + y2)(2x+ 2yy′) =
25

4
y2 +

25

2
xyy′

4(x2 + y2)x+ 4(x2 + y2)yy′ =
25

4
y2 +

25

2
xyy′

(4(x2 + y2)− 25

2
x)yy′ =

25

4
y2 − 4(x2 + y2)x

y′ =
25
4
y2 − 4(x2 + y2)x

(y(4(x2 + y2)− 25
2
x))

• At (1, 2), (x2 + y2) = 5, and

y′ =
25
4
4− 4(1 + 4)

2(4(5)− 25
2
)

=
1

3

Hence, at (1, 2), the equation of the tangent line is y =
1

3
(x− 1) + 2.
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• At (1,−2), (x2 + y2) = 5 as well, and

y′ =
5

−15
= −1

3

Hence, at (1,−2), the equation of the tangent line is y = −1

3
(x− 1)− 2.

• At (1,
1

2
), x2 + y2 =

5

4
, and

y′ =
25
16

− 5
1
2
(5− 25

2
)
=

55

16

4

15
=

11

12
.

Hence, at (1,
1

2
), the equation of the tangent line is y =

11

12
(x− 1) +

1

2
.

• At (1,−1

2
), x2 + y2 =

5

4
, and

y′ =
25
16

− 5

−1
2
(5− 25

2
)
=

55

16

4

−15
= −11

12

Hence, at (1,−1

2
), the equation of the tangent line is y = −11

12
(x− 1)− 1

2
.
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3.11. Related Rates.

Class Time 2 periods. Essential.

Key Point

• Related Rates.

Lecture Material
Explain that related rates are just an application of the Chain Rule. All the variables
are functions of time, so when you take the derivative you have to use the Chain Rule.
Provide examples using the Pythagorean Theorem, similar triangles, and trigonometric
functions. The examples in the text are fine, or work Exercises 13, 20 and 21.

Solving related rate problems usually begins with finding a geometric relationship
among the variables. This is often more difficult than doing the “calculus.” Work
Exercises 31 and 32 which have no geometry associated with them. This may help
students better understand the calculus involved.

Discussion Topics/Class Activities
Lead a discussion on how to solve Exercise 43 and have students work out the details
at their desks. Students have difficulty with related rate problems so you should plan 2
periods on this topic. Supplement with questions from past AP Calculus exams.

Suggested Problems (spread over 2 assignments)
Exercises 5, 7, 13, 16, 17, 19, 23, 25, 29, 30, 37, 39, 41
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Worksheet 3.11.
Related Rates

1. The volume of a sphere of radius r is V =
4

3
πr3. If the radius is expanding at a rate of

14 in/min, at what rate is the volume changing when r = 8 in.

2. Sonya and Isaac are in motorboats located at the center of a lake. At time t = 0, Sonya
begins traveling south at a speed of 32 mph. At the same time Isaac takes off, heading
east at a speed of 27 mph.

a. How far have Sonya and Issac traveled after 12 min?

b. At what rate are they separating after 12 min?
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3. At a given moment, a plane passes directly above a radar station at an altitude of 6 miles
and a speed of 500 mph. Suppose θ is the angle between the line segment joining the
plane and the radar station and the horizontal. How fast is θ changing 10 minutes after
the plane passes over the radar station?

Θ

6

x

d x
�����������
d t
= 500 mph

4. As a man walks away from a 12-ft lamppost, the tip of his shadow moves twice as fast
as he does. What is the man’s height?

5. Calculate the rate in square centimeters per second at which area is swept out by the
second-hand of a circular clock as a function of the clock’s radius.
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Solutions to Worksheet 3.11

1. The volume of a sphere of radius r is V =
4

3
πr3. If the radius is expanding at a rate of

14 in/min, at what rate is the volume changing when r = 8 in?

As the radius is expanding at 14 in/min, we know that
dr

dt
= 14 in/min. Taking the

derivative with respect to t of the equation V =
4

3
πr3 yields

dV

dt
=

4

3
π(3r2)

dr

dt
= 4πr2

dr

dt

Substituting r = 8 and
dr

dt
= 14,

dV

dt
= 4πr2(14) = 56π(64) = 3584π in/min

2. Sonya and Isaac are in motorboats located at the center of a lake. At time t = 0, Sonya
begins traveling south at a speed of 32 mph. At the same time Isaac takes off, heading
east at a speed of 27 mph.

a. How far have Sonya and Issac traveled after 12 minutes?
With Isaac x miles east of the center of the lake and Sonya y miles south of its center,

let h be the distance between them.

After 12 minutes or
12

60
=

1

5
hour, Isaac has traveled

1

5
× 27 =

27

5
miles and Sonya has

traveled
1

5
× 32 =

32

5
miles.

b. At what rate are they separating after 12 minutes?
We have h2 = x2 + y2 and

2h
dh

dt
= 2x

dx

dt
+ 2y

dy

dt

whence

dh

dt
=

xdx
dt

+ y dy
dt

h
=

xdx
dt

+ y dy
dt

√

x2 + y2

Substituting x =
27

5
,
dx

dt
= 27, y =

32

5
, and

dy

dt
= 32,

dh

dt
=

(
27
5

)
(27) +

(
32
5

)
(32)

√
(
27
5

)2
+
(
32
5

)2
=

√
1753 ≈ 41.87 mph
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3. At a given moment, a plane passes directly above a radar station at an altitude of 6 miles
and a speed of 500 mph. Suppose θ is the angle between the line segment joining the
plane and the radar station and the horizontal. How fast is θ changing 10 minutes after
the plane passes over the radar station?

Let x be the distance of the plane from the station along the ground and h the distance
through the air.

(1) By the Pythagorean Theorem,

h2 = x2 + 62 = x2 + 36

After an half hour, x =
1

2
× 500 = 250 miles. Thus 2h

dh

dt
= 2x

dx

dt
, whence

dh

dt
=

x

h

dx

dt
. With x = 250, h =

√
2502 + 36, and

dx

dt
= 500,

dh

dt
=

250√
2502 + 36

× 500 ≈ 499.86 mph

(2) When the plane is directly above the station, x = 0, so the distance between the
plane and the station is not changing, for at this instant

dh

dt
=

0

6
× 500 = 0 mph

4. As a man walks away from a 12-ft lamppost, the tip of his shadow moves twice as fast
as he does. What is the man’s height?

Let L be the length from the base of the lamppost to the tip of the man’s shadow. Let
x be the distance from the base of the lamppost to the man’s feet. Let h be the man’s
height. The right triangle with legs L − x, h (formed by the man and his shadow) and
the right triangle with legs L, 12 (formed by the lamppost and the total length L) are
similar. By this similarity,

L− x

h
=

L

12
h is constant, so taking the derivative of both sides of this equation yields

1

h
(
dL

dt
− dx

dt
) =

1

12

dL

dt

The problem statement states that L′(t) = 2x′(t), so 12 = 2h.
Hence, h = 6 ft.

5. Calculate the rate in square centimeters per second at which area is swept out by the
second-hand of a circular clock as a function of the clock’s radius.

Let r be the radius of the circular clock in centimeters. In 60 seconds, the second hand
sweeps out the full area of the circular clock face, A = πr2. Therefore, the constant rate

at which area is swept out by the second-hand is
πr2

60
cm2/s.





133

Chapter 3 AP Problems

1. lim
h→0

(2 + h)5 − 25

h
=

A. 0

B. 1

C. 32

D. 80

E. 160

2. Given that f(x) =
√
x− x2 for x ≥ 0,

a. Find f ′(x).

b. For what value(s) of x, if any, does f(x) = 0?

c. For what value(s) of x, if any, does f ′(x) = 0?

d. For what value(s) of x does f have a vertical tangent?
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3. If f(x) = 2x
√
x− 3

√
x+

1√
x
, then f ′(x) =

A. 2
√
x− 3√

x
+

1

x
√
x

B. 3
√
x− 3

2
√
x
− 1

2x
√
x

C. 3
√
x− 3√

x
+

1

2x
√
x

D.
4x− 3√

x

E. 2
√
x− 3 +

1

x
√
x

4. Given a function f such that f(1) = 2, f ′(1) = −4 and h(x) =
x2

f(x)
, what is the value

of h′(1)?

A. −2

B. −1/2

C. 0

D. 1

E. 2
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5. The position of a ball rolling down an inclined plane 8 meters long is given by the formula
s = .2t2 + .6t, where s is the number of meters traveled after t seconds.

a. How far has the ball traveled after 2 seconds?

b. How fast is the ball traveling after 2 seconds? Indicate the units of measure.

c. What is the average velocity of the ball on the interval from t = 1 to t = 3 seconds?

d. Write an equation for v, the velocity of the ball at any time t, and use it to compute
the velocity of the ball at the instant that it reaches the end of the inclined plane.
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6. The three curves labeled I, II, and III depicted in the graph below represent a function
f and its first and second derivatives. If the functions were listed in the order f , f ′, f ′′,
what would be the corresponding order of their labels?

A. I, II, III

B. II, III, I

C. II, I, III

D. I, III, II

E. III, II, I

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
I II III
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7. If f(x) = x2 sin(x) + 2x cos(x), then f ′(x) =

A. 2x cos(x)− 2 sin(x)

B. 2x+ cos(x) + 2− sin(x)

C. x2 cos(x) + 4x sin(x)− 2 cos(x)

D. x2 cos(x) + 2 cos(x)

E. 2x sin(x)− 2 cos(x)

8. If h(x) = sin(3x), then h(99)(x) =

A. 399 sin(3x)

B. −399 sin(3x)

C. 399 cos(3x)

D. −399 cos(3x)

E. 99 sin(3x)

9. Consider the curve given by 2x2 − xy − y2 + 18 = 0.

a. Show that
dy

dx
=

4x− y

x+ 2y
.

b. Find the x coordinates of all points on the curve where the tangent line is horizontal.
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c. Show that there is no point on the curve where the slope of the tangent line is undefined.

10. A tank full of water in the shape of a cone with point facing down has a height of 12

meters and a radius of 4 meters. The tank is emptying at a rate of
πh

3
cubic meters per

minute. (V =
1

3
πr2h)

a. Write an equation that expresses the volume in terms of h only.

b. Find
dh

dt
in terms of h.

c. At what rate is the depth of the water changing when the volume is 27π cubic meters?
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Solutions to Chapter 3 AP Problems

1. lim
h→0

(2 + h)5 − 25

h
=

A. 0

B. 1

C. 32

D. 80

E. 160

D [THIS QUESTION CORRESPONDS WITH SECTION 3.1].
The limit formula is equivalent to evaluating the derivative of y = x5 at x = 2.

2. Given that f(x) =
√
x− x2 for x ≥ 0,

a. Find f ′(x).

f ′(x) =
1

2
x−1/2 − 2x =

1− 4x3/2

2
√
x

b. For what value(s) of x, if any, does f(x) = 0?

x = 0, x = 1

c. For what value(s) of x, if any, does f ′(x) = 0?

x =
1

8
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d. For what value(s) of x does f have a vertical tangent?

x = 0
[THIS QUESTION CORRESPONDS WITH SECTION 3.2]

3. If f(x) = 2x
√
x− 3

√
x+

1√
x
, then f ′(x) =

A. 2
√
x− 3√

x
+

1

x
√
x

B. 3
√
x− 3

2
√
x
− 1

2x
√
x

C. 3
√
x− 3√

x
+

1

2x
√
x

D.
4x− 3√

x

E. 2
√
x− 3 +

1

x
√
x

B [THIS QUESTION CORRESPONDS WITH SECTION 3.2]

4. Given a function f such that f(1) = 2, f ′(1) = −4 and h(x) =
x2

f(x)
, what is the value

of h′(1)?

A. −2

B. −1/2

C. 0

D. 1

E. 2

E [THIS QUESTION CORRESPONDS WITH SECTION 3.3]

We have h′(x) =
f(x) · 2x− x2 · f ′(x)

f(x)2
, so h′(1) =

2 · 2− 1 · (−4)

4
= 2.
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5. The position of a ball rolling down an inclined plane 8 meters long is given by the formula
s = .2t2 + .6t, where s is the number of meters traveled after t seconds.

a. How far has the ball traveled after 2 seconds?

2 meters

b. How fast is the ball traveling after 2 seconds? Indicate the units of measure.

1.4 meters/second

c. What is the average velocity of the ball on the interval from t = 1 to t = 3 seconds?

1.4 meters/second

d. Write an equation for v, the velocity of the ball at any time t, and use it to compute
the velocity of the ball at the instant that it reaches the end of the inclined plane.

v = .4t+ .6; s = 8 when t = 5, so v(5) = 2.6 meters/second
[THIS QUESTION CORRESPONDS WITH SECTION 3.4]
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6. The three curves labeled I, II, and III depicted in the graph below represent a function
f and its first and second derivatives. If the functions were listed in the order f , f ′, f ′′,
what would be the corresponding order of their labels?

A. I, II, III

B. II, III, I

C. II, I, III

D. I, III, II

E. III, II, I

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
I II III

E [THIS QUESTION CORRESPONDS WITH SECTION 3.5]
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7. If f(x) = x2 sin(x) + 2x cos(x), then f ′(x) =

A. 2x cos(x)− 2 sin(x)

B. 2x+ cos(x) + 2− sin(x)

C. x2 cos(x) + 4x sin(x)− 2 cos(x)

D. x2 cos(x) + 2 cos(x)

E. 2x sin(x)− 2 cos(x)

D [THIS QUESTION CORRESPONDS WITH SECTION 3.6]

8. If h(x) = sin(3x), then h(99)(x) =

A. 399 sin(3x)

B. −399 sin(3x)

C. 399 cos(3x)

D. −399 cos(3x)

E. 99 sin(3x)

D [THIS QUESTION CORRESPONDS WITH SECTION 3.7]

9. Consider the curve given by 2x2 − xy − y2 + 18 = 0.

a. Show that
dy

dx
=

4x− y

x+ 2y
.

We have 4x− x
dy

dx
− y − 2y

dy

dx
= 0, so 4x− y = (x+ 2y)

dy

dx
, i.e.

dy

dx
=

4x− y

x+ 2y
.

b. Find the x coordinates of all points on the curve where the tangent line is horizontal.

x = ±1
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c. Show that there is no point on the curve where the slope of the tangent line is undefined.

The slope is undefined when x + 2y = 0, so x = −2y. After substitution into the
original equation, there is no real solution.

[THIS QUESTION CORRESPONDS WITH SECTION 3.10]

10. A tank full of water in the shape of a cone with point facing down has a height of 12

meters and a radius of 4 meters. The tank is emptying at a rate of
πh

3
cubic meters per

minute. (V =
1

3
πr2h)

a. Write an equation that expresses the volume in terms of h only.

V =
1

27
πh3

b. Find
dh

dt
in terms of h.

dh

dt
=

−3

h

c. At what rate is the depth of the water changing when the volume is 27π cubic meters?

dh

dt
= −1

3
[THIS QUESTION CORRESPONDS WITH SECTION 3.11]
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Ray Cannon’s Chapter 4 Overview

Chapter 2 provided the theoretical groundwork for the derivative, followed by Chapter
3, which gave us the theorems that allow us to compute derivatives easily. Chapter 4
now offers some applications of the derivative, and gives us a glimpse of how powerful
Calculus is in problem solving. Section 4.1 returns to the idea of local linearization and
approximating values of f(x) by corresponding values of the tangent line approximation.
Section 4.2 states the theorem (Theorem 1) that guarantees the existence of maximum
and minimum values of f(x) if f is continuous on an interval of the form [a, b]. AP
students should know the statement of this theorem, but are not responsible for its
proof. The students are also responsible for the language in this section (critical point,
local (or relative) maximum, etc.) They should also know what AP Readers sometimes
call “the Candidates Test” (Theorem 3) for finding max/min on [a, b]; that is, one need
only look at the values of f(x) at the end points and critical points. This is an extremely

important theorem.
Students should also be able to state and use the Mean Value Theorem. In Section

4.3, note that the definitions of increasing and decreasing are pre-calculus definitions.
Having a positive derivative and increasing are not synonymous, as shown for example
by f(x) = x3 which is increasing on (−∞,∞). Note also that sign charts can be very
helpful in deciding the behavior of f , but by themselves are not sufficient for justifying
a local or absolute extreme value on the AP exam; a statement of the First Derivative
Test, Second Derivative Test, or the Candidates Test is required.

Section 4.4 uses f ′(x) increasing as the definition of concave up; some texts use f ′′(x) >
0. Either characterization is acceptable on the AP exam. Care must be taken to note
that the Second Derivative Test is a local test, and by itself is not a justification for a
global max or min. L’Hôpital’s Rule is covered in Section 4.5, which is required for BC
students, but is not part of the AB syllabus. Section 4.6 puts all the ideas of shape of the
graph together with asymptotes to give a comprehensive view of how to graph a function.

Section 4.7 shows the power of calculus to solve problems. This is a difficult section for
students, and many have difficulty “getting started” with these problems. Many teachers
find it profitable to give just a very few of these problems in any one assignment, but then
give many assignments that contain one or two of these problems even if the main focus
of the assignment is something else. Newtons Method is the focus of Section 4.8, and is a
nice example of using the tangent line, this time to approximate the zeros of a function,
but is not required of either AB or BC students. The last section of Chapter 4, Section
4.9, deals with finding antiderivatives, a familiar topic on the AP exams, especially with
problems dealing with linear motion.
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4. Applications of the Derivative

4.1. Linear Approximation and Applications.

Class Time AB 2 periods; BC 1 period. Essential

Key Points

• The Linear Approximation is an estimate of the change ∆f = f(a +∆x)− f(a)
of a function f at a and is given by ∆f ≈ f ′(a)∆x.

• The linearization L(x) of f at x = a is given by L(x) = f ′(a)(x − a) + f(a);
L(x) is the line tangent to the curve y = f(x) at x = a. L(x) can be used to
approximate f(x) provided that a is close to x.

• The error in Linear Approximation is

Error = |∆f − f ′(a)∆x|

Lecture Material
Linear Approximation and linearization are conceptually straightforward applications

of the derivative. Point out that by definition f ′(a) = lim
∆x→0

∆f

∆x
, so if ∆x is small,

∆f ≈ f ′(a)∆x (illustrated graphically in Figure 1). Now work Exercises 6 and 11.
Conceptually, the linearization L(x) at x = a approximates f(x) for x close to a is
easiest seen by using a graphing calculator to “zoom” in on the graph of f(x) at a, or by
Figure 4. Eventually, if and only if the function is differentiable, the graph will resemble
a line, in particular, the tangent line. Observe that away from the point, linearization is
not a good approximation, as in Figure 5. Now work Exercise 44.

Percentage error and differentials are not tested on the AB and BC exams.

Discussion Topics/Class Activities
Have the class graph a function together with a tangent line at some point, and then see
how long it takes students to zoom with their calculators so that the function and the
tangent line are indistinguishable.

Suggested Problems
Exercises 1, 3, 7, 17, 19, 21, 25, 30, 35, 39
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Worksheet 4.1.
Linear Approximation and Applications

1. Let f(x) =
√
1 + x, a = 8, and ∆x = 1. Estimate ∆f using the Linear Approximation

and use a calculator to compute the error.

2. Estimate 16.51/4 − 161/4 using the Linear Approximation and find the error using a
calculator.

3. Approximate (27.03)1/3 using linearization and use a calculator to compute the error.
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4. When the price of a bus pass from Albuquerque to Los Alamos is set at x dollars, the bus
company takes in a monthly revenue of R(x) = 1.5x− 01.x2 (in thousands of dollars).

(a) Estimate the change in revenue if the price is raised from $50 to $53.
(b) Suppose that x = 80. How will revenue be affected by a small increase in price?

Explain using the Linear Approximation.
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Solutions to Worksheet 4.1

1. Let f(x) =
√
1 + x, a = 8, and ∆x = 1. Estimate ∆f using the Linear Approximation

and use a calculator to compute the error.

Let f(x) = (1+x)1/2, a = 8, and ∆x = 1. Then f ′(x) =
1

2
(1+x)−1/2, f ′(a) = f ′(8) =

1

6

and ∆f ≈ f ′(a)∆x =
1

6
(1) =

1

6
≈ .166667. The actual change is

∆f = f(a+∆x)− f(a) = f(9)− f(8) =
√
10− 3 ≈ .162278.

The error in the Linear Approximation is therefore |.162278− .166667| = .004389.

2. Estimate 16.51/4 − 161/4 using the Linear Approximation and find the error using a
calculator.

Let f(x) = x1/4, a = 16, and ∆x = .5. Then f ′(x) =
1

4
x−3/4 and f ′(a) = f ′(16) =

1

32
.

• The Linear Approximation is ∆f ≈ f ′(a)∆x =
1

32
(.5) = .015625.

• The actual change is

∆f = f(a+∆x)− f(a) = f(16.5)− f(16) ≈ 2.015445− 2 = .015445.

• The error in this estimate is |.015625− .015445| ≈ .00018.

3. Approximate (27.03)1/3 using linearization and use a calculator to compute the error.

Let f(x) = x1/3, a = 27, and ∆x = .03. Then f ′(x) =
1

3
x−2/3, f ′(a) = f ′(27) =

1

27
and the linearization to f(x) is

L(x) = f ′(a)(x− a) + f(a) =
1

27
(x− 27) + 3 =

1

27
x+ 2.

Thus, we have (27.03)1/3 ≈ L(27.03) ≈ 3.0011111.
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4. When the price of a bus pass from Albuquerque to Los Alamos is set at x dollars, the bus
company takes in a monthly revenue of R(x) = 1.5x− 01.x2 (in thousands of dollars).

(a) Estimate the change in revenue if the price is raised from $50 to $53.
(b) Suppose that x = 80. How will revenue be affected by a small increase in price?

Explain using the Linear Approximation.

(1) If the price is raised from $50 to $53, then ∆x = 3 and

∆R ≈ R′(50)∆x = (1.5− 0.02(50))(3) = 1.5.

We therefore estimate an increase of $1500 in revenue.
(2) Because R′(80) = 1.5− 0.02(80) = −0.1, the Linear Approximation gives ∆R ≈

−0.1∆x. A small increase in price would thus result in a decrease in revenue.
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4.2. Extreme Values.

Class Time 2 periods. Essential.

Key Points

• The extreme values of a function f(x) on an interval I are the minimum and
maximum values of f(x) for x ∈ I.

• If f(x) is continuous on [a, b], then f(x) has a minimum and a maximum value
on [a, b].

• f(c) is a local maximum if f(x) ≤ f(c) for all x in some open interval around c.
Similarly, f(c) is a local minimum if f(x) ≥ f(c) for all x in some open interval
around c.

• c is a critical point of the function f(x) if either f ′(c) = 0 or f ′(c) does not exist.
• Fermat’s Theorem: If f(c) is a local minimum or maximum, then c is a critical
point.

• Extreme values of a function on a closed interval occur at the critical points or
the endpoints of the interval. To find the extreme values of a continuous function
f(x) on a closed interval [a, b]:
(1) Find the critical points of f(x).
(2) Calculate f(x) at the critical points in [a, b] as well as at the endpoints a and

b.
The minimum and maximum values on [a, b] are the smallest and largest values
computed in (2).

• Rolle’s Theorem: If f(x) is continuous on [a, b], and differentiable on (a, b), and
f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Lecture Material
This section is crucial to most of what follows as critical points are defined. It is essential
that students are adept at finding critical points. Begin by defining extreme values, and
observe that extreme values need not exist for functions that are not continuous or are
defined on an open interval (as in Figure 2). This naturally leads to the statement of
Theorem 1, that every continuous function on a closed interval attains a minimum and
a maximum value. Then define local extrema and graphically show that if the graph of
f(x) has a local minimum or maximum, then the tangent line is horizontal or the tangent
line does not exist (that is, f(x) has a cusp, see Figure 4). This gives rise to the definition
of a critical point, as well as to the statement of Fermat’s Theorem on Local Extrema
(Theorem 2). Work a couple of problems finding critical points, for example Exercises
6 and 9. Now all the tools for finding minimum and maximum values of continuous
functions on closed intervals are in hand and should be presented. Work Exercise 18.
Finally, discuss Rolle’s Theorem and illustrate its use by working Exercise 54 or Exercise
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58, as Rolle’s Theorem is a special case of the Mean Value Theorem presented in the
next section.

The written justification of an extreme value (local or absolute) is a common task on
the AP Calculus exams. Here and in the next several sections, be sure to do likewise.
(A “sign chart” is not considered sufficient justification; a sentence is required explaining
the sign changes or showing that the critical points and end points were evaluated.)

Discussion Topics/Class Activities
Work Exercise 80 with the class. This exercise is a quite interesting example of optimiza-
tion in the real world dealing with the honeycomb structure in a beehive.

Suggested Problems (spread over 2 assignments)
Exercises 1, 2, 3, 5, 13, 15, 17, 25, 29, 33, 39, 47, 55, 65, 67, 75
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Worksheet 4.2.
Extreme Values

1. Find all critical points of the function f(t) = 8t3 − t2.

2. Find all critical points of the function f(x) = x1/3.

3. Find the maximum and minimum values of the function y = −x2 + 10x + 43 on the
interval [3, 8].
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4. Find the maximum and minimum values of the function y =
x2 + 1

x− 4
on the interval [5, 6].

5. Verify Rolle’s Theorem for the function f(x) = sin x on the interval [
π

4
,
9π

4
].

6. Use Rolle’s Theorem to prove that f(x) =
x3

6
+

x2

2
+ x+ 1 has at most one real root.
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Solutions to Worksheet 4.2

1. Find all critical points of the function f(t) = 8t3 − t2.
Let f(t) = 8t3 − t2. Then f ′(t) = 24t2 − 2t = 2t(12t − 1) = 0 implies that t = 0 and

t =
1

12
are the critical points of f .

2. Find all critical points of the function f(x) = x1/3.

Let f(x) = x1/3. Then f ′(x) =
1

3
x−2/3. The derivative is never zero, but does not exist

at x = 0. Thus, x = 0 is the only critical point of f .

3. Find the maximum and minimum values of the function y = −x2 + 10x + 43 on the
interval [3, 8].

Let f(x) = 43 + 10x − x2. Then f ′(x) = 10 − 2x = 0, whence x = 5 is a critical
point of f . The minimum of f on the interval [3, 8] is f(8) = 59, whereas its maximum
is f(5) = 68. (Note: f(3) = 64.)

4. Find the maximum and minimum values of the function y =
x2 + 1

x− 4
on the interval [5, 6].

Let f(x) =
x2 + 1

x− 4
. Then

f ′(x) =
(x− 4) · 2x− (x2 + 1) · 1

(x− 4)2
=

x2 − 8x− 1

(x− 4)2
= 0

implies x = 4±
√
17. Neither critical point lies in the interval [5, 6]. On this interval, the

minimum of f is f(6) =
37

2
= 18.5, while its maximum is f(5) = 25.

5. Verify Rolle’s Theorem for the function f(x) = sin x on the interval [
π

4
,
9π

4
].

Because f is continuous on [
π

4
,
3π

4
], differentiable on (

π

4
,
3π

4
) and

f
(π

4

)

= f

(
3π

4

)

=

√
2

2
,

we may conclude from Rolle’s Theorem that there exists a c ∈ (
π

4
,
3π

4
) at which f ′(c) = 0.

Here, f ′(x) = cosx, so we may take c =
π

2
.
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6. Use Rolle’s Theorem to prove that f(x) =
x3

6
+

x2

2
+ x+ 1 has at most one real root.

We use proof by contradiction. Suppose f(x) = x3/6+x2/2+x+1 has two real roots,
x = a and x = b. Then f(a) = f(b) = 0 and Rolle’s Theorem guarantees that there
exists a c ∈ (a, b) at which f ′(c) = 0. However,

f ′(x) = x2/2 + x+ 1 =
1

2
(x+ 1)2 + 1 ≥ 1

for all x, so there is no c ∈ (a, b) at which f ′(c) = 0. Based on this contradiction, we
conclude that f(x) = x3/6 + x2/2 + x+ 1 cannot have more than one real root.
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4.3. The Mean Value Theorem and Monotonicity.

Class Time 2 periods. Essential.

Key Points

• Mean Value Theorem: If f is continuous on [a, b] and differentiable on (a, b), then
there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

• If f ′(x) > 0 for all x ∈ (a, b), then f is increasing on (a, b), while if f ′(x) < 0 for
all x ∈ (a, b), then f is decreasing on (a, b).

• f ′(x) can change sign only at a critical point. In particular, f(x) is monotonic on
the intervals between critical points.

• To determine the sign of f ′(x) on an interval between two critical points, find the
sign of f ′(x0) at any point in the interval.

• First Derivative Test: If c is a critical point, then
– If f ′ changes sign from positive to negative at c, then f has a local maximum
at c.

– If f ′ changes sign from negative to positive at c, then f has a local minimum
at c.

– If f ′ does not change sign at c, then f has no local extrema at c.

Lecture Material
The First Derivative Test is extremely important and should be stressed. Begin, though,
with the Mean Value Theorem, as it is a generalization of Rolle’s Theorem from the
previous section. Graphically show the meaning of the Mean Value Theorem, namely,
that there is some point c in (a, b) such that f ′(c) (the slope of the line tangent to the
curve y = f(x) at c) is the same as the slope of the line between (a, f(a)) and (b, f(b))
(for example with Figure 1), and point out that Rolle’s Theorem is just a special case.
Then work Exercise 2. Also point out Corollary 2.

Graphically show that an increasing function has positive derivative and that a de-
creasing function has negative derivative (for example, with Figure 3). Point out that
the sign of the derivative can change only at critical points or points where the function
is undefined, so a function is monotonic on an interval between two such points. Thus
to determine whether f ′(x) is positive or negative on such an interval, one only needs
to determine whether f ′(c) is positive or negative for any c in the interval. It might
be worthwhile to point out that for rational functions that can be factored into a prod-
uct of linear factors, a sign chart also provides the same information, with perhaps less
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work. Graphically illustrate the First Derivative Test (for example with Figure 6). Work
Exercises 24, 30, and 38.

In Theorem 2, if f is also assumed to be continuous on the closed interval [a, b] (where
f ′(a) or f ′(b) may or may not be zero), then the intervals in the conclusion are also

closed. Thus f(x) = sin(x) is increasing on
[

−π

2
,
π

2

]

and decreasing on

[
π

2
,
3π

2

]

. Having

π

2
in both intervals may concern some students. Point out that functions increase and

decrease on intervals, not at points.

Discussion Topics/Class Activities
The written justification of an extreme value (local or absolute) is a common task on the
AP Calculus exams. Be sure to do likewise. (A “sign chart” is not considered sufficient
justification; a sentence is required explaining the sign changes or showing that the critical
points and end points were evaluated.)

Work Exercise 57. This exercise demonstrates some of the uses of the Mean Value
Theorem by showing that given some information about a function and it’s derivative,
specific information about the function can be obtained using the Mean Value Theorem.

Suggested Problems (spread over 2 assignments)
Exercises 3, 5, 9, 11, 12, 13, 14, 17, 19, 21, 25, 29, 39 (19–52 are good places for students
to practice writing justifications of extreme values), 56, 58
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Worksheet 4.3.
The Mean Value Theorem and Monotonicity

1. Find a point c satisfying the conclusion of the Mean Value Theorem for the function
y =

√
x and the interval [4, 9].

2. Determine the intervals on which the function f(x) = x(x+1)3 is monotonically increasing
or decreasing, and use the First Derivative Test to determine whether the local extrema
are local minima or maxima (or neither).



160

3. Determine the intervals on which the function f(x) = x2−x4 is monotonically increasing
or decreasing, and use the First Derivative Test to determine whether the local extrema
are local minima or maxima (or neither).

4. Determine the intervals on which the function f(x) = cos θ + sin θ on the interval [0, 2π]
is monotonically increasing or decreasing, and use the First Derivative Test to determine
whether the local extrema are local minima or maxima (or neither).
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Solutions to Worksheet 4.3

1. Find a point c satisfying the conclusion of the Mean Value Theorem for the function
y =

√
x and the interval [4, 9].

Let f(x) = x1/2, a = 4, b = 9. By the MVT, there exists a c ∈ (4, 9) such that

1

2
c−1/2 = f ′(c) =

f(b)− f(a)

b− a
=

3− 2

9− 4
=

1

5

Thus
1√
c
=

2

5
, whence c =

25

4
= 6.25 ∈ (4, 9).

2. Determine the intervals on which the function f(x) = x(x+1)3 is monotonically increasing
or decreasing, and use the First Derivative Test to determine whether the local extrema
are local minima or maxima (or neither).

Let f(x) = x (x+ 1)3. Then

f ′(x) = x · 3 (x+ 1)2 + (x+ 1)3 · 1 = (4x+ 1) (x+ 1)2 = 0

yields critical points c = −1,−1

4
. By plugging in, we see that the first derivative is

negative on [−∞,−1

4
] and positive on [−1

4
,∞]. Hence f has a local minima at x = −1

4
.

3. Determine the intervals on which the function f(x) = x2−x4 is monotonically increasing
or decreasing, and use the First Derivative Test to determine whether the local extrema
are local minima or maxima (or neither).

Let f(x) = x2 − x4. Then f ′(x) = 2x − 4x3 = 2x
(
1− 2x2

)
= 0 yields critical

points c = 0,± 1√
2
. By plugging in, we see that the first derivative is negative on

[− 1√
2
, 0] ∪ [

1√
2
,∞] and positive on [−∞,− 1√

2
] ∪ [0,

1√
2
]. Hence f has a local minima

at x = 0 and local maxima at x = ± 1√
2
.

4. Determine the intervals on which the function f(x) = cos θ + sin θ on the interval [0, 2π]
is monotonically increasing or decreasing, and use the First Derivative Test to determine
whether the local extrema are local minima or maxima (or neither).

Let f(θ) = cos θ + sin θ. Then f ′(θ) = cos θ − sin θ, which yields c =
π

4
,
5π

4
on the

interval [0, 2π]. By plugging in the appropriate points we see that the first derivative

is negative on [
π

4
,
5π

4
] and positive on [0,

π

4
] ∪ [

5π

4
, 2π]. Hence f has a local minima at

x =
5π

4
and local maxima at x =

π

4
.
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4.4. The Shape of a Graph.

Class Time 2 periods. Essential.

Key Points

• A differentiable function f(x) is concave up on (a, b) if f ′′(x) > 0 for all x ∈ (a, b)
and concave down if f ′′(x) < 0 for all x ∈ (a, b).

• The signs of the first two derivatives give the following information about the
shape of the graph of f :
(1) If f ′ > 0, then f is increasing, while if f ′ < 0 then f is decreasing.
(2) If f ′′ > 0, then f is concave up, while if f ′′ < 0, then f is concave down.

• A point of inflection of f is a point where the concavity of f changes from concave
up to concave down or from concave down to concave up.

• Second Derivative Test: If f ′(c) = 0, then
– f(c) is a local maximum if f ′′(c) < 0.
– f(c) is a local minimum if f ′′(c) > 0.
– the test fails and says nothing if f ′′(c) = 0 or if f ′′(c) does not exist.

Lecture Material
Begin with the definition of concavity: A differentiable function on (a, b) is concave up
on (a, b) if f ′(x) is increasing on (a, b) and concave down on (a, b) if f ′(x) is decreasing
on (a, b). Point out that if f is concave up on an interval, then the tangent lines will be
below the graph on the interval, while if f is concave down on an interval, the tangent
lines will be above the graph on the interval (perhaps using Figures 1 and 2, as examples).
Observe that the students already know how to do this computationally, as the procedure
is precisely the same as determining where a function is increasing or decreasing, but f ′(x)
is used instead of f(x). Also, x = c is an inflection point for y = f(x) if the concavity
changes from up to down or down to up at x = c. That is, x = c is an inflection point
of y = f(x) if f ′(x) has a local minimum or maximum at x = c. Work Exercise 4 and
Example 4. Now state the Second Derivative Test: Let f(x) be differentiable with critical
point c. If f ′′(c) exists, then

(1) f ′′(c) > 0 implies f(c) is a local minimum.
(2) f ′′(c) < 0 implies f(c) is a local maximum.
(3) f ′′(c) = 0 is inconclusive: f(c) may be a local minimum, or maximum, or neither.

Illustrate graphically by showing that at a local maximum, the tangent line is above the
graph (and so concave down), and at a local minimum, the tangent line is below the
graph (and so concave up). Figure 10 may be useful in illustration. Now work Exercises
24, 32 and 40.
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Discussion Topics/Class Activities
Discuss Exercise 57 with the class. Note that the graph will be concave up at the
beginning of the epidemic and concave down at the end of the epidemic (and so will
have an inflection point). For part (b), note that the inflection point is where the rate of
change changes from positive to negative, and so the number of new infections per day
will decrease.

Suggested Problems (spread over 2 assignments)
Exercises 1, 2, 3, 5, 7, 15, 19, 20–22, 24, 39, 45, 53, 62
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Worksheet 4.4.
The Shape of a Graph

1. Determine the intervals on which the function y = t3−3t2+1 is concave up and concave
down and find the points of inflection.

2. Find the critical points of f(x) = x4 − 8x2 + 1 and apply the Second Derivative Test (if
possible) to determine whether they are local minima or maxima.
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3. Determine the intervals on which the function f(x) = 2x4 − 3x2 + 2 is concave up and
concave down, find the points of inflection, and determine whether the critical points are
local minima or maxima.

4. Determine the intervals on which the function f(t) = sin2 t is concave up and concave
down, find the points of inflection, and determine whether the critical points are local
minima or maxima.
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Solutions to Worksheet 4.4

1. Determine the intervals on which the function y = t3−3t2+1 is concave up and concave
down and find the points of inflection.

Let f(t) = t3 − 3t2 + 1. Then f ′(t) = 3t2 − 6t and f ′′(t) = 6t− 6 = 0 at t = 1. Now, f
is concave up on (1,∞), since f ′′(t) > 0 there. Moreover, f is concave down on (−∞, 1),
since f ′′(t) < 0 there. Finally, because f ′′(t) changes sign at t = 1, t = 1 is a point of
inflection.

2. Find the critical points of f(x) = x4 − 8x2 + 1 and apply the Second Derivative Test (if
possible) to determine whether they are local minima or maxima.

Let f(x) = x4 − 8x2 + 1. Then f ′(x) = 4x3 − 16x = 4x(x2 − 4), and the critical points
are x = 0 and x = ±2. Moreover, f ′′(x) = 12x2 − 16, so f ′′(−2) = f ′′(2) = 32 > 0
and f ′′(0) = −16 < 0. Therefore, by the Second Derivative Test, f(−2) = −15 and
f(2) = −15 are local minima, and f(0) = 1 is a local maximum.

3. Determine the intervals on which the function f(x) = 2x4 − 3x2 + 2 is concave up and
concave down, find the points of inflection, and determine if the critical points are local
minima or maxima.

Let f(x) = 2x4−3x2+2. Then f ′(x) = 8x3−6x = 2x
(
4x2 − 3

)
= 0 yields x = 0,±

√
3

2

as candidates for extrema. Moreover, f ′′(x) = 24x2 − 6 = 6(4x2 − 1) = 0 gives x = ±1

2

as inflection point candidates. Since f ′′(x) changes sign at x = ±1

2
, they are actual

inflection points. Also, since f ′′(0) = −6 and f ′′(±
√
3

2
) = 12, the Second Derivative Test

implies that f(x) has a local maximum at x = 0 and local minima at x = ±
√
3

2

4. Determine the intervals on which the function f(t) = sin2 t is concave up and concave
down, find the points of inflection, and determine if the critical points are local minima
or maxima.

Let f(t) = sin2 t on [0, π]. Then f ′(t) = 2 sin t cos t = sin 2t = 0 yields t =
π

2
as a

candidate for an extremum. Moreover, f ′′(t) = 2 cos 2t = 0 gives t =
π

4
,
3π

4
as inflection

point candidates. Since f ′′(x) changes sign at t =
π

4
,
3π

4
, they are actual inflection

points. Also, since f ′′(
π

2
) = −2, the Second Derivative Test implies that f(x) has a local

maximum at x =
π

2
.
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4.5. L’Hôpital’s Rule.

Class Time AB 0 periods, not tested on the AB exam; BC 1 period, essential.

L’Hôpital’s Rule is not tested on the AB Calculus exams. Many teachers choose to
include it because it makes so many limits easy to find.

L’Hôpital’s Rule is tested on the BC Calculus exams in the context of determining the
convergence of improper integrals (Section 7.6).

Key Points

• L’Hôpital’s rule for indeterminate forms
0

0
and

∞
∞ .

• Indeterminate forms 0 · ∞, ∞−∞, 00 and 1∞.
• Comparing rates of growth of two functions.

Lecture Material

L’Hôpital’s Rule provides a method to evaluate limits lim
x→a

f(x)

g(x)
where

f(x)

g(x)
has indeter-

minate form
0

0
or

∞
∞ at x = a: If g′(x) 6= 0 for all x near a, x 6= a and if

f ′(x)

g′(x)
→ L

(finite or infinite) as x → a, then lim
x→a

f(x)

g(x)
= L too. The same result holds for one-sided

limits and for limits at ±∞. In the case that f(a) = g(a) = 0, and both f ′(x) and g′(x)
are continuous at x = a with g′(a) 6= 0, this is easy to see, as shown at the end of the
section.

Examples 1–5 are straightforward applications of L’Hôpital’s Rule. Example 6 illus-
trates the importance of checking that f(x)/g(x) has appropriate indeterminate form.
Examples 7 and 8 show how to rewrite forms such as ∞−∞ and 00. For an example of

1∞, apply L’Hôpital’s Rule to show that lim
t→∞

(

1 +
1

t

)t

= e.

Functions f(x) and g(x) have comparable rates of growth as x → ∞ if 0 <

∣
∣
∣
∣
lim
x→∞

f(x)

g(x)

∣
∣
∣
∣
<

∞. If, on the other hand, both f(x), g(x) → ∞ but f(x)/g(x) → 0 as x → ∞, then
it must be the case that g(x) → ∞ faster than f(x) → ∞. We write f(x) << g(x) as
x → ∞. See Examples 8 and 9.

Rates of growth of polynomials are determined by their degree. (L’Hôpital’s Rule
is not needed to compare rates of growth of two polynomials—simply divide.) A very
important application of L’Hôpital’s Rule is that for any r > 0,

ln x << xr << ex as x → ∞
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In particular, rates of growth (decay) and L’Hôpital’s Rule are important in determining
convergence of infinite series.

Discussion Topics/Class Activities
An informal proof of L’Hôpital’s Rule is to graph the two functions (numerator and
denominator) at once, and zoom in on their point of intersection (the limit value) which
is on the x-axis (why?). Since the functions are differentiable, they are locally linear, so
the graphs appear to be lines. The ratio of the y-coordinates of two lines that intersect
on the x-axis is the ratio of the slopes (i.e. their derivatives). Thus the limit of the ratio
of the two functions is the ratio of their derivatives.

Suggested Problems
Exercises 1, 5, 9, 13, 17, 25, 27, 47, 57, 58
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Worksheet 4.5.
L’Hôpital’s Rule

1. Evaluate the limit.

a. lim
x→0

sin(4x)

sin(3x)

b. lim
x→∞

ln x√
x

c. lim
x→∞

x2e−x/2

d. lim
x→0

(
1

x
− 1

sin x

)

e. lim
x→1

(1 + ln x)1/(x−1)
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2. Let f(x) = x1/x in the domain 0 < x < ∞.

a. Calculate lim
x→0+

f(x) and lim
x→∞

f(x).

b. Find the intervals on which f is increasing or decreasing and sketch the graph of f(x).

1 2 3 4 5

0.25

0.5

0.75

1

1.25

1.5

1.75

2
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Solutions to Worksheet 4.5

1. Evaluate the following limits.

a. lim
x→0

sin(4x)

sin(3x)
= lim

x→0

4 cos(4x)

3 cos(3x)
=

4

3

b. lim
x→∞

ln x√
x

= lim
x→∞

1
x
1

2
√
x

= lim
x→∞

2
√
x

x
= lim

x→∞

2√
x
= 0

c. lim
x→∞

x2e−x/2 = lim
x→∞

x2

ex/2
= lim

x→∞

2x
ex/2

2

= lim
x→∞

4
ex/2

2

= lim
x→∞

8

ex/2
= 0

d. lim
x→0

(
1

x
− 1

sin x

)

= lim
x→0

sin x− x

x sin x
= lim

x→0

cosx− 1

x cosx+ sin x
= lim

x→0

− sin x

−x sin x+ 2 cosx
= 0

e. lim
x→1

(1 + ln x)1/(x−1)

Let y = (1 + ln x)1/(x−1). Then lim
x→1

ln y = lim
x→1

ln(1 + ln x)

x− 1
=

1
x

1 + ln x
= 1. Thus

lim
x→1

y = e.

2. Let f(x) = x1/x in the domain 0 < x < ∞.

a. Calculate lim
x→0+

f(x) and lim
x→∞

f(x).

The first limit is not an indeterminate form. lim
x→0+

f(x) = 0. The second limit is

indeterminate. Let y = x1/x. Then lim
x→∞

ln y = lim
x→∞

ln x

x
= lim

x→∞

1

x
= 0. Hence lim

x→∞
x1/x =

e0 = 1.

b. Find the intervals on which f is increasing or decreasing.

Let y = x1/x. Then ln y =
ln x

x
. Taking the derivative of both sides with respect to x

and solving for y′ gives y′(x) = x
1−2x

x (1− ln x). This result is positive for all x ∈ [0, e] and
negative for all x ∈ [e,∞], which implies that f(x) is increasing on (0, e] and decreasing
on [e,∞). Thus f(x) has a local maximum at (e, e1/e).
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4.6. Graph Sketching and Asymptotes.

Class Time AB 3 periods; BC 2 periods. Essential.

Key Points

• The graph of a function f is made up of arcs that have one of the following four
basic shapes:
(1) ++ f ′ > 0, f ′′ > 0 Increasing and concave up
(2) +− f ′ > 0, f ′′ < 0 Increasing and concave down
(3) −+ f ′ < 0, f ′′ > 0 Decreasing and concave up
(4) −− f ′ < 0, f ′′ < 0 Decreasing and concave down

• A transition point of f is a point in the domain of f at which either f ′ changes
sign (a local minimum or maximum) or f ′′ changes sign (an inflection point).

• For convenience, we break the curve sketching process into the following steps:
(1) Determine the domain of f .
(2) Determine the signs of f ′ and f ′′.
(3) Note transition points and sign combinations.
(4) Draw arcs of appropriate shape and asymptotic behavior.

• A horizontal line y = L is a horizontal asymptote if

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L

• A vertical line x = L is a vertical asymptote if

lim
x→L+

f(x) = ±∞ and/or lim
x→L−

f(x) = ±∞

• For a rational function f(x) =
anx

n + an−1x
n−1 + · · ·+ a0

bmxm + bm−1xm−1 + · · ·+ b0
,

lim
x→±∞

f(x) =
an
bm

lim
x→±∞

xn−m

Lecture Material
Note that there are four possible combinations of nonzero signs of f ′(x) and f ′′(x), namely
++, +−, −+, and −−. Show students the “basic” shape of a graph for each of these
possibilities, as in Figure 1. A transition point is a point where the basic shape of the
graph changes (from one of the four possibilities to another) because of a sign change
in either f ′(x) or f ′′(x). Point out that that for a polynomial f(x), f(x) → ±∞ as
x → ±∞. These observations lead to an algorithm to obtain the graph of a function:

(1) Determine the signs of f ′ and f ′′ in the intervals between the transition points.
(To perform this step, note that one must find the critical points of f as well as
possible inflection points).
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(2) Note transition points and sign combinations. A sign diagram as in Figure 4
may be useful in summarizing this information as well as noting local extrema
and inflection points. Also at this step, it would be useful to substitute the
x-coordinates of the transitive points into f(x) to obtain their y-coordinates.

(3) Draw arcs of appropriate shapes. Draw arcs of appropriate shapes and asymptotic
behavior to connect transition points. Also, x and y-intercepts can be plotted.

Now work a couple of examples, for example, Exercises 14 and 32.
Turn to asymptotic behavior. For rational (and other types of functions), limits at ±∞

can exist, and we define a horizontal asymptote to be a horizontal line y = L such that at
least one of the following is true: lim

x→∞
f(x) = L or lim

x→−∞
f(x) = L. Of course a vertical

line x = L is a vertical asymptote if f(x) has an infinite limit as x → L from either
the left or the right (or both). The main technique for evaluating infinite limits (and so
finding horizontal asymptotes) is to divide both the numerator and the denominator by
the highest power of the variable that occurs in the denominator. For rational functions,
this easily leads to Theorem 1:

lim
x→±∞

(
anx

n + an−1x
n−1 + · · ·+ a0

bmxm + bm−1xm−1 + · · ·+ b0

)

=
an
bm

lim
x→±∞

xn−m

Work Exercises 55, 60 and 62 to illustrate the use of this technique and Theorem 1.

Discussion Topics/Class Activities
Slant asymptotes are not tested on the AP Calculus exams. This part may be omitted.

Work Exercise 72, discussing slant asymptotes with the class. Also show students how
the slant asymptote y = x+1 was found. Point out that other polynomial functions can
act as “asymptotes” of f(x) = P (x)/Q(x) if the degree of P (x) is at least two more than
the degree of Q(x). Can the graph of the function cross a slant asymptote (as the graph
of a function cannot cross a vertical asymptote)?

Slant asymptotes are not tested on the AB or BC exams.

Suggested Problems (spread over 2 or 3 assignments)
Exercises 1, 10, 13, 17, 21, 37, 41, 47, 51, 57, 63
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Worksheet 4.6.
Graph Sketching and Asymptotes

1. Sketch the graph of the function y = x3 − 3x + 5. Indicate the transition points (local
extrema and points of inflection).
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2. Sketch the graph of the function y = 2 sin x − cos2 x; [0, 2π]. Indicate the transition
points.
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In Exercises 3 and 4, calculate the limits by dividing the numerator and denominator by
the highest power of x appearing in the denominator.

3. lim
x→∞

3x2 + 20x

4x2 + 9

4. lim
x→∞

4

x+ 5

5. Calculate lim
t→−∞

√
x4 + 1

x3 + 1
.

6. Sketch the graph of the function y = x+
1

x
.

-4 -2 2 4

-4

-2

2

4



177

Solutions to Worksheet 4.6

1. Sketch the graph of the function y = x3 − 3x + 5. Indicate the transition points (local
extrema and points of inflection).

-2 -1 1 2

-2.5
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7.5
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12.5

2. Sketch the graph of the function y = 2 sin x − cos2 x; [0, 2π]. Indicate the transition
points.
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In Exercises 3 and 4, calculate the limits by dividing the numerator and denominator by
the highest power of x appearing in the denominator.

3. lim
x→∞

3x2 + 20x

4x2 + 9
=

3

4

4. lim
x→∞

4

x+ 5
= 0

5. Calculate lim
t→−∞

√
x4 + 1

x3 + 1
= 0.
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6. Sketch the graph of the function y = x+
1

x
.
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4.7. Applied Optimization.

Class Time 2 periods. Essential.

Key Points

• There are normally three main steps in solving an applied optimization problem:
(1) Choose the variables.

Determine which quantities are relevant, perhaps by drawing a diagram, and
assign to each an appropriate variable name.

(2) Find the function and the interval.
Restate the question as an optimization problem for a function f over some
interval I. If the function depends on more than one variable, use a constraint
equation to write f as a function of just one variable.

(3) Optimize the function.
• If the interval I is open, f does not necessarily take on a minimum or maximum
value on I. If it does, though, the values must occur at critical points within
the interval. To determine whether a minimum or maximum exists, analyze the
behavior of f as x approaches the endpoints of the interval.

Lecture Material
This is an important section because it shows the practical applications of the derivative
and hence the value of calculus. Go over the three steps that are usually encountered in
an applied optimization problem. This might best be accomplished in the context of an
example, say, Exercise 2. Most of the examples involve optimizing a continuous function
f on a closed interval [a, b], and so by Theorem 1 of Section 4.2, the Existence of Extrema
on a Closed Interval, a minimum value and a maximum value of f exist on [a, b], and
they occur either at a critical point or at an endpoint of the interval. Following are the
steps in determining the extrema:

(1) Find the critical points of f in [a, b].
(2) Evaluate f(x) at the critical points and at the endpoints a and b.
(3) The largest and smallest values obtained in the previous step are the maximum

and minimum values, respectively.

Occasionally, the function that needs to be optimized is defined on an open interval, so no
maximum or minimum value need exist. In this case, any maximum or minimum value
will occur at a critical point in the interval. Additionally, an appropriate limit of the
function at each endpoint should be determined to verify that a minimum or maximum
value exists. Work Exercises 2, 4, 14 (an appropriate example for discussing maximums
and minimums on open intervals), and 22. Students will have the most trouble in writing
the model (equation) to be optimized. Spend your time teaching how to do this.



180

While optimization is an important application of derivatives, questions of this type
rarely appear on the AP Calculus exams because of the difficulty students have in writing
the model. For this reason, do not spend too much time on this section.

Discussion Topics/Class Activities
Derive Snell’s Law (Exercise 44). Exercise 59 also deals with Snell’s Law, so it might be
good to work it in class or assign as homework.

Suggested Problems (2 assignments)
Exercises 1–13 odd, 16, 18, 21, 35, 39
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Worksheet 4.7.
Applied Optimization

1. A 100-inch piece of wire is divided into two pieces and each piece is bent into a square.
How should this be done in order to minimize the sum of the areas of the two squares?

(a) Express the sum of the areas of the squares in terms of the lengths x and y of the
two pieces.

(b) What is the constraint equation relating x and y?

(c) Does this problem require optimization over an open interval or a closed interval?

(d) Solve the optimization problem.

2. The legs of a right triangle have lengths a and b satisfying a + b = 10. Which values of
a and b maximize the area of the triangle?



182

3. A box is constructed out of two different types of metal. The metal for the top and
bottom, which are both square, costs $1 per square foot, and the metal for the sides
costs $2 per square foot. Find the dimensions that minimize cost if the box has to have
a volume of 20 ft3.
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4. Find the angle θ that maximizes the area of the trapezoid with base of length 4 and sides
of length 2.

4

22

ΘΘ
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Solutions to Worksheet 4.7

1. A 100-inch piece of wire is divided into two pieces and each piece is bent into a square.
How should this be done in order to minimize the sum of the areas of the two squares?

Let x and y be the lengths of the pieces.

(a) Express the sum of the areas of the squares in terms of the lengths x and y of the
two pieces.
The perimeter of the first square is x, which implies the length of each side is

x

4
and the area is

(x

4

)2

. Similarly, the area of the second square is
(y

4

)2

. Then

the sum of the areas is given by A =
(x

4

)2

+
(y

4

)2

.

(b) What is the constraint equation relating x and y?
x+ y = 100, whence y = 100− x. Then

A(x) =
(x

4

)2

+
(y

4

)2

=
(x

4

)2

+

(
100− x

4

)2

=
1

8
x2 − 25

2
x+ 625

(c) Does this problem require optimization over an open interval or a closed interval?
Since it is possible for the minimum total area to be realized by not cutting the

wire at all, optimization over the closed interval [0, 100] suffices.
(d) Solve the optimization problem.

Solve A′(x) =
1

4
x − 25

2
= 0 to obtain x = 50. Now A(0) = A(100) = 625,

whereas A(50) = 312.5. Accordingly, the sum of the areas of the squares is
minimized if the wire is cut in half.

2. The legs of a right triangle have lengths a and b satisfying a + b = 10. Which values of
a and b maximize the area of the triangle?

Let the side lengths be a, b > 0. Now a + b = 10, whence b = 10 − a. Let A(a) =
1

2
ab =

1

2
a(10− a) = 5a− 1

2
a2 and note that a is restricted to the closed interval [0, 10].

Solve A′(a) = 5 − a = 0 to obtain a = 5. Since A(0) = A(10) = 0 and A(5) =
25

2
, the

maximum area is A(5) =
25

2
when a = b = 5.
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3. A box is constructed out of two different types of metal. The metal for the top and
bottom, which are both square, costs $1 per square foot, and the metal for the sides
costs $2 per square foot. Find the dimensions that minimize cost if the box has to have
a volume of 20 ft3.

Let x > 0 be the length of a side of the square base and z > 0 the height of the box.
With volume x2z = 20, we have z = 20/x2 and cost

C(x) = 1 · 2 · x2 + 2 · 4 · xz = 2x2 + 160x−1

Solve C ′(x) = 4x− 160x−2 = 0 to obtain x = 2 (5)1/3. Since C(x) → ∞ as x → 0+ and

as x → ∞, the minimum cost is C
(

2 (5)1/3
)

= 24 (5)2/3 ≈ $70.18 when x = 2 (5)1/3 ≈
3.42 ft and z = 51/3 ≈ 1.71 ft.

4. Find the angle θ that maximizes the area of the trapezoid with base of length 4 and sides
of length 2.

4

22

ΘΘ

Allowing for degenerate trapezoids, 0 ≤ θ ≤ π. Via trigonometry and surgery (slice off
a right triangle and rearrange the trapezoid into a rectangle), the area of the trapezoid is
equivalent to the area of a rectangle of base 4− 2 cos θ and height 2 sin θ; in other words,

A(θ) = (4− 2 cos θ) · 2 sin θ = 8 sin θ − 4 sin θ cos θ = 8 sin θ − 2 sin 2θ

where 0 ≤ θ ≤ π. Solve

A′(θ) = 8 cos θ − 4 cos 2θ = 4 + 8 cos θ − 8 cos2 θ = 0

for 0 ≤ θ ≤ π to obtain

θ = θ0 = cos−1

(

1−
√
3

2

)

≈ 1.94553

Since A(0) = A(π) = 0 and A(θ0) = 31/4(3 +
√
3)
√
2, the area of the trapezoid is

maximized when θ = cos−1

(

1−
√
3

2

)

.
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4.8. Newton’s Method.

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Points

• Newton’s Method: To find a sequence of numerical approximations to a solution
of f(x) = 0, begin with an initial guess x0, chosen as close as possible to an
actual solution, possibly by referring to a graph. Then construct x0, x1, . . . using
the formula

xn+1 = xn −
f(xn)

f ′(xn)
In favorable cases, the sequence will converge to a solution.

• Usually, the sequence x0, x1, . . . converges quickly to a solution. If xn and xn+1

agree to m decimal places, one may be reasonably certain that xn agrees with a
true solution to m decimal places.

Lecture Material
Newton’s Method is a technique for approximating the zeros of functions. The basic
idea is that the x-intercept of the line tangent to the curve y = f(x) at a point c
is closer to a zero of f than c is to the same zero. This procedure is then iterated,
as graphically depicted in Figure 2. Using straightforward algebra, derive the formula

xn+1 = xn − f(xn)

f ′(xn)
. Now work Exercises 2 and 5. Point out that there are problems

with Newton’s Method, namely, that one cannot begin at a local extrema, the zero that
is found may not necessarily be the root one would like to find, and it is not clear how
many iterations must be done to find a zero to the required accuracy.

Discussion Topics/Class Activities
Work Exercises 28 and 29 to demonstrate that Newton’s Method will not always find
zeros of functions. With Exercise 28, do not make an initial guess x0, but instead show
that xn+1 = −2xn.

Suggested Problems
Exercises 1, 3 (basic, computational), 5 (basic, computational and graphical), 9, 11
(intermediate, computational), 11, 13 (intermediate, computational and graphical)
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Worksheet 4.8.
Newton’s Method

Use Newton’s Method with the given function and initial value x0 to calculate x1, x2, x3.

1. f(x) = x2 − 7, x0 = 2.5

2. f(x) = cosx− x, x0 = .8
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3. Sketch the graph of x3 − 4x + 1 and use Newton’s Method to approximate the largest
positive root to within an error of at most 10−3.

-2 -1 1 2

-4

-2

2

4

4. The first positive solution of sin x = 0 is x = π. Use Newton’s Method to calculate π to
four decimal places.
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Solutions to Worksheet 4.8

Use Newton’s Method with the given function and initial value x0 to calculate x1, x2, x3.

1. f(x) = x2 − 7, x0 = 2.5
Let f(x) = x2 − 7 and define

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2
n − 7

2xn

With x0 = 2.5, we compute x1 = 2.65, x2 = 2.645754717 and x3 = 2.645751311.

2. f(x) = cosx− x, x0 = .8
Let f(x) = cosx− x and define

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

cosxn − xn

− sin xn − 1

With x0 = 0.8, we compute x1 = 0.739853306, x2 = 0.739085263, and x3 = 0.739085133.

3. Sketch the graph of x3 − 4x + 1 and use Newton’s Method to approximate the largest
positive root to within an error of at most 10−3.

-2 -1 1 2
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2

4
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If f(x) = x3 − 4x+ 1, then the graph of f(x) shown suggests that the largest positive
root is near x = 2. Taking x0 = 2, Newton’s Method gives x1 = 1.875, x2 = 1.86097852,
and x3 = 1.860805879. The largest positive root of x3 − 4x+ 1 is approximately 1.8608.

4. The first positive solution of sin x = 0 is x = π. Use Newton’s Method to calculate π to
four decimal places.

Let f(x) = sin x. Taking x0 = 3, we have x1 = 3.142546543, x2 = 3.141592653, and
x3 = 3.141592654. Hence, π ≈ 3.1416 to four decimal places.
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4.9. Antiderivatives.

Class Time AB 3 periods; BC 2 periods. Essential.

Antiderivatives and Initial Value Problems may be considered here, or with the material
in Chapter 5. If placed after 5.3 and 5.4 (FTC), the students will have a reason to need
to know about antiderivatives.

Key Points

• F (x) is an antiderivative of f(x) if F ′(x) = f(x).
• Two antiderivatives of f(x) differ only by a constant.
• The general antiderivative of f(x) is denoted by the indefinite integral

∫

f(x)dx = F (x) + C

• Indefinite integrals should be checked by differentiation. If F (x)+C is the correct

antiderivative, then
d

dx
(F (x)) = f(x).

• Integration formulas (see also Theorems 5 and 6):
∫

xndx =
xn+1

n + 1
+ C provided that n 6= 1

∫

x−1dx =

∫
dx

x
= ln |x|+ C

∫

sin(kx+ b)dx = −1

k
cos(kx+ b) + C provided that k 6= 0

∫

cos(kx+ b)dx =
1

k
sin(kx+ b) + C provided that k 6= 0

∫

ekx+bdx =
1

k
ekx+b + C, provided that k 6= 0

∫

exdx = ex + C

∫

ekx+bdx =
1

k
ekx+b + C

• To solve the differential equation
dy

dx
= f(x) with initial condition y(x0) = y0,

first find the general antiderivative y = F (x) +C of f(x). Then find C using the
initial condition F (x0) + C = y0.
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Lecture Material
Begin by defining an antiderivative: F (x) is an antiderivative of f(x) on (a, b) if F ′(x) =
f(x) for all x ∈ (a, b). Note that if F (x) is an antiderivative of f(x), then every other
antiderivative of f(x) is of the form F (x) +C, for some constant C (this is Theorem 1).

Also observe that the indefinite integral is defined as

∫

f(x)dx = F (x) +C, where F (x)

is an antiderivative of f(x) and C is a constant. Then show the various integral formulas:
the Power Rule (Theorem 2), integrals of the natural log (Theorem 3), ex, Sum Rule,
Multiples Rule (both are contained in Theorem 4), and the basic trigonometric integrals.
As this is an extremely important topic, work several examples, such as Exercises 18, 28,
32, 34, 38, and 40. Then point out that if one knows the value of f(x) at one point, that
is, one knows appropriate initial conditions, then the constant the specific antiderivative
can be obtained. Work Exercises 50 and 65.

Discussion Topics/Class Activities
Find the general antiderivative of (2x + 9)10. First remind students that if they were
differentiating (2x + 9)10, then they would use the Chain Rule and the Power Rule to
obtain 10 · (2x + 9)10−1 · 2. Using the Power Rule for Integrals, one can make an initial

guess that an antiderivative of (2x + 9)10 is
(2x+ 9)10+1

10 + 1
=

(2x+ 9)11

11
. Checking this

guess by differentiating, it is easy to see that the initial guess is off by a factor of 2, which
happens to be the derivative of 2x+ 9.

Suggested Problems (3 assignments)
Exercises 1–7 odd, 13–37 every other odd, 40, 41, 47–57 odd, 63–67 odd
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Worksheet 4.9.
Antiderivatives

Evaluate the indefinite integral.

1.

∫

(5x3 − x−2 − x3/5)dx

2.

∫
3

x3/2
dx

3.

∫
x2 + 2x− 3

x4
dx

4.

∫

sin 9x dx

5.

∫

18 sin(3z + 8)dz
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6.

∫ (
8

x
+ 3ex

)

dx

7. Solve the differential equation
dy

dx
= 8x3 + 3x2 − 3 with initial condition y(1) = 1.

8. Given that f ′′(x) = x3 − 2x+ 1, f ′(0) = 1, and f(0) = 0, first find f ′ and then find f .
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Solutions to Worksheet 4.9

Evaluate the indefinite integral.

1.

∫

(5x3 − x−2 − x3/5)dx
∫

(5x3 − x−2 − x3/5) dx =
5

4
x4 + x−1 − 5

8
x8/5 + C

2.

∫
3

x3/2
dx Since

3

x3/2
= 3x−3/2

we get
∫

3

x3/2
dx =

∫

3x−3/2 dx

= 3

(
1

(−1/2)
x−1/2

)

+ C

= −6x−1/2 + C

3.

∫
x2 + 2x− 3

x4
dx

We don’t know how to take the antiderivative of a quotient, so we will have to distribute

the
1

x4
over x2 + 2x− 3:

x2 + 2x− 3

x4
= x−4(x2 + 2x− 3)

= x−2 + 2x−3 − 3x−4.

From this formula, we can calculate
∫

x2 + 2x− 3

x4
dx =

∫
(
x−2 + 2x−3 − 3x−4

)
dx

=
1

−1
x−1 + 2

(
1

−2
x−2

)

− 3

(
1

−3
x−3

)

+ C

= −x−1 − x−2 + x−3 + C
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4.

∫

sin 9xdx

Using the indefinite integral formula for sin(kx+ b),
∫

sin 9x dx =
1

9
(− cos 9x) + C = −1

9
cos 9x+ C.

5.

∫

18 sin(3z + 8)dz

From the integral formula for cos(kt+ b) with k = −4, b = 3,
∫

cos(3− 4t) dt =
1

−4
sin(3− 4t) + C = −1

4
sin(3− 4t) + C

6.

∫ (
8

x
+ 3ex)dx

∫ (
8

x
+ 3ex)dx = 8 ln |x|+ 3ex.

7. Solve the differential equation
dy

dx
= 8x3 + 3x2 − 3 with initial condition y(1) = 1.

Since
dy

dx
= 8x3 + 3x2 − 3,

y =

∫

(8x3 + 3x2 − 3) dx = 2x4 + x3 − 3x+ C

Thus 1 = y(1) = 0 + C, whence C = 1. Therefore, y = 2x4 + x3 − 3x+ 1.

8. Given that f ′′(x) = x3 − 2x+ 1, f ′(0) = 1, and f(0) = 0, first find f ′ and then find f .
Let g(x) = f ′(x). The statement gives g′(x) = x3 − 2x+ 1, g(0) = 1. From it, we get

g(x) =
1

4
x4−x2+x+C. Then g(0) = 1 gives 1 = C, so f ′(x) = g(x) =

1

4
x4−x2+x+1.

f ′(x) =
1

4
x4 − x2 + x + 1, so f(x) =

1

20
x5 − 1

3
x3 +

1

2
x2 + x + C. Next, f(0) = 0 gives

C = 0, so

f(x) =
1

20
x5 − 1

3
x3 +

1

2
x2 + x





197

Chapter 4 AP Problems

For 1, 2, 5 and 7, a calculator may be used. For 3, 4, and 6, no calculator allowed.

1. A basketball has a radius of 12 centimeters, measured on the outside, when properly

inflated. (V =
4

3
πr3)

a. Write a formula for the linearization L(r) of the volume formula when the basketball
is properly inflated.

b. Using a linear approximation, estimate the change in the volume when the radius is
increased by .1 centimeters from its proper inflation. Show the work that leads to your
answer.

c. The basketball is considered to be in danger of bursting from inflation when its volume
is more than 6% above the volume when its properly inflated. What is its radius at
the point when it becomes in danger of bursting? Give your answer correct to three
decimal places.

2. How many critical points does the function f(x) = |x3−2x| have over its entire domain?

A. 2

B. 3

C. 4

D. 5

E. Infinitely many



198

3. The function g is continuous on [−1, 2] and differentiable on (−1, 2). If g(−1) = 2 and
g(2) = −4, which of the following statements is not necessarily true?

A. There exists a value c on (−1, 2) such that f(c) = 0.

B. There exists a value c on (−1, 2) such that f ′(c) = 0.

C. There exists a value c on (−1, 2) such that f(c) = −3.

D. There exists a value c on (−1, 2) such that f ′(c) = −2.

E. There exists a value c on [−1, 2] such that f(c) ≥ f(x) for all x on [−1, 2].

4. The graph shown depicts f ′, the derivative of f . The graph of f ′ has x-intercepts at −1
and 2 and a relative maximum where x = 0. At which value(s) of x does f have a point
of inflection?

−3

−2

−1

3

2

1

y

f '

x
−3 −1−2 1 2 3

A. −1 only

B. −1 and 2

C. 0 only

D. 0 and 2

E. −1, 0 and 2



199

5. A function h has the property that h > 0, h′ < 0 and h′′ > 0 for all real values of x.
Which of these could be the graph of h?

A.
y

x

B.
y

x

C.
y

x

D.
y

x

E.
y

x
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6. Consider the graph of the function f(x) =
1

x
in the first quadrant, and a line l tangent

to f at a point P where x = k.

f(x) = 1
x

x

l

P

y

a. Find the slope of the line tangent to f at x = k in terms of k.

b. Write an equation for the tangent line l in terms of k.

c. Using the equation found in part (b), find the x and y intercepts of the line l.

d. Find the area of the triangle formed by l and the coordinate axes.
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7. Which of the following is equivalent to

∫
6x2 − 4x

x4
dx ?

I.
5(2x3 − 2x2)

x5
+ C1

II.
−6x+ 2

x2
+ C2

III.
x2 − 6x+ 2

x2
+ C3

A. I only

B. II only

C. III only

D. II and III

E. I, II and III
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Solutions to Chapter 4 AP Problems

1. A basketball has a radius of 12 centimeters, measured on the outside, when properly

inflated. (V =
4

3
πr3)

a. Write a formula for the linearization L(r) of the volume formula when the basketball
is properly inflated.

L(r) = 576π(r − 12) + 2304π or 576πr − 4608π

b. Using a linear approximation, estimate the change in the volume when the radius is
increased by .1 centimeters from its proper inflation. Show the work that leads to your
answer.

∆V ≈ V ′(12) ·∆r = 576π · (.1) = 57.6π cubic centimeters

c. The basketball is considered to be in danger of bursting from inflation when its volume
is more than 6% above the volume when its properly inflated. What is its radius at
the point when it becomes in danger of bursting? Give your answer correct to three
decimal places.

1.06V = 1.06

(
4

3
π · 123

)

=
4

3
πr3

r3 = 1.06(123)

r = 12.235 centimeters
[THIS QUESTION CORRESPONDS WITH SECTION 4.1]
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2. How many critical points does the function f(x) = |x3−2x| have over its entire domain?

A. 2

B. 3

C. 4

D. 5

E. Infinitely many

D [THIS QUESTION CORRESPONDS WITH SECTION 4.2]

3. The function g is continuous on [−1, 2] and differentiable on (−1, 2). If g(−1) = 2 and
g(2) = −4, which of the following statements is not necessarily true?

A. There exists a value c on (−1, 2) such that f(c) = 0.

B. There exists a value c on (−1, 2) such that f ′(c) = 0.

C. There exists a value c on (−1, 2) such that f(c) = −3.

D. There exists a value c on (−1, 2) such that f ′(c) = −2.

E. There exists a value c on [−1, 2] such that f(c) ≥ f(x) for all x on [−1, 2].

B [THIS QUESTION CORRESPONDS WITH SECTION 4.3]
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4. The graph shown depicts f ′, the derivative of f . The graph of f ′ has x-intercepts at −1
and 2 and a relative maximum where x = 0. At which value(s) of x does f have a point
of inflection?

−3

−2

−1

3

2

1

y

f '

x
−3 −1−2 1 2 3

A. −1 only

B. −1 and 2

C. 0 only

D. 0 and 2

E. −1, 0 and 2

A [THIS QUESTION CORRESPONDS WITH SECTION 4.4]
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5. A function h has the property that h > 0, h′ < 0 and h′′ > 0 for all real values of x.
Which of these could be the graph of h?

A.
y

x

B.
y

x

C.
y

x

D.
y

x

E.
y

x

A [THIS QUESTION CORRESPONDS WITH SECTION 4.6]
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6. Consider the graph of the function f(x) =
1

x
in the first quadrant, and a line l tangent

to f at a point P where x = k.

f(x) = 1
x

x

l

P

y

a. Find the slope of the line tangent to f at x = k in terms of k.

−1

k2

b. Write an equation for the tangent line l in terms of k.

y − 1

k
= − 1

k2
(x− k) or y = − 1

k2
x+

2

k

c. Using the equation found in part (b), find the x and y intercepts of the line l.

x-intercept: 2k; y-intercept:
2

k

d. Find the area of the triangle formed by l and the coordinate axes.

2
[THIS QUESTION CORRESPONDS WITH SECTION 4.7]
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7. Which of the following is equivalent to

∫
6x2 − 4x

x4
dx ?

I.
5(2x3 − 2x2)

x5
+ C1

II.
−6x+ 2

x2
+ C2

III.
x2 − 6x+ 2

x2
+ C3

A. I only

B. II only

C. III only

D. II and III

E. I, II and III

D [THIS QUESTION CORRESPONDS WITH SECTION 4.9]
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Ray Cannon’s Chapter 5 Overview

Chapter 5 introduces a totally different topic from what has been covered up to now:
the Definite Integral. Section 5.1 motivates the topic through the idea of area. Students
need to be careful to understand that this motivation is for non-negative integrands.
They are not responsible for the summation formulas in this section, but nonetheless
need to know the definite integral is the limit of Riemann sums, which are formally
defined in Section 5.2. The text returns to Numerical Approximations in Section 7.8,
but here students should be familiar with Left-hand, right-hand, and midpoint Riemann
sums. Section 5.2 also contains the basic properties of definite integrals such as linearity
and additivity for adjacent intervals.

There are two parts to the Fundamental Theorem of Calculus, and Section 5.3 presents
the part the shows how to evaluate definite integrals using antiderivatives. This is the
form that most students remember; in fact, many forget this is a theorem, and so this
point should be stressed. Section 5.4 gives the second part of the FTC, which is that every
continuous function has an antiderivative. Many students have difficulty in understanding
this part of the theorem, and questions testing it are always some of the more difficult
on the AP exam. Students have difficulty understanding the topic of “functions defined
by integrals” even leaving aside how to differentiate such functions. Be sure to cover
examples using the chain rule.

Section 5.5 covers interpreting the definite integral as giving the net change in f given
how f is changing, i.e. given f ′. This is an important interpretation of the definite
integral, and has appeared often on the AP exam in various settings. This is a section you
may want to keep returning to when making assignments. Section 5.6 covers the technique
of integration by substitution, and be sure students understand how to change the limits
of integration and not always rely on back-substitution. The AP course description
lists inverse trigonometric functions as “basic.” So students need to know the formulas
in Section 5.7 for antiderivatives, going beyond simply the power rule. The Chapter
concludes with Section 5.8, discussing the importance of the differential equation y′ =
ky and showing how to solve it. This topic is profitably revisited in Chapter 9 when
discussing “separation of variables.”
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5. The Integral

5.1. Limits: Approximating and Computing Area.

Class Time AB 2 periods; BC 2 periods. Essential.

Key Points

• Approximating area by rectangles.
(i) Riemann sums.
(ii) Right- and left-endpoint approximations.

• Midpoint approximation.

Lecture Material
First assume that f(x) is a continuous non-negative function over an interval [a, b]. Dis-
cuss what it means to partition [a, b] into n subintervals of equal width. Use the slide
provided, a graphing program, or dynamic geometry software to approximate the area
under the curve with n = 5 using the right endpoints, the left endpoints and the mid-
points of the subinterval. Do Example 1 in the text, but also calculate the left-endpoint
and midpoint approximations.

Review summation notation and its properties. Then derive the formulas for the right-
endpoint, left-endpoint, and midpoint approximations. Do Example 2. This will be all
you can cover in one hour.

Summation notation is not tested on the AB exam. On the BC exam it is used with
infinite series and power series. Examples 3 and 4 show how infinite sums can be used to
find areas without recourse to definite integrals or the Fundamental Theorem of Calculus
(FTC). This type of problem does not need to be stressed for the AP exams.

Setting up and computing left-, right- and midpoint sums with a small number of par-
tition points (Examples 1 and 2) is tested from function values given in tables (Exercises
3, 5, 6) or with an equation. These should be reviewed carefully and students should be
given practice doing these.

Students should have a good graphical understanding of the sums, and the connection
between them and the increasing/decreasing behaviors (Figures 7, 8, 9). They should
know, for example, that a right-endpoint sum overestimates the area of an increasing
function, etc.

Discussion Topics/Class Activities
Discuss how if an object moves in a straight line with constant velocity v, then the
distance traveled over a time interval [t1, t2] is equal to the area of the rectangle with
height v and width t2 − t1.

Suggested Problems (2 assignments)
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Exercises 1, 3, 5, 7, 11, 13, 15, 17, 65, 67, 79, 86
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Worksheet 5.1.

Approximating and Computing Area

1. Calculate the area of the shaded rectangles in the figure. Which approximation to the
area under the curve is this?

-3 -2 -1 1 2 3

y=
4- x
��������������������
1+ x2

2. Estimate R6 and L6 for the function shown in the graph.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3
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3. Evaluate the following sums (see Equations (3)–(5)). (optional)

a.
20∑

k=1

2k + 1

b.

10∑

ℓ=1

2(ℓ3 − 2ℓ2)

4. Evaluate lim
N→∞

N∑

i=1

i2 − i+ 1

N3
. (optional)

5. Use Equations (3)–(5) to find a formula for RN for f(x) = 3x2 − x+ 4 over the interval
[0, 1]. (optional)

6. Evaluate lim
N→∞

1

N

N∑

j=1

√

1−
(

j

N

)2

by interpreting the limit as an area. (optional)
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Solutions to Worksheet 5.1

1. Calculate the area of the shaded rectangles in the figure below. Which approximation to
the area under the curve is this?

-3 -2 -1 1 2 3

y=
4- x
��������������������
1+ x2

Each rectangle has a width of 1 and the height is taken as the value of the function at
the midpoint of the interval. Thus, the area of the shaded rectangles is

1

(
26

29
+

22

13
+

18

5
+

14

5
+

10

13
+

6

29

)

=
18784

1885
≈ 9.965

Because there are six rectangles and the height of each rectangle is taken as the value of
the function at the midpoint of the interval, the shaded rectangles represent the approx-
imation M6 to the area under the curve.

2. Estimate R6, and L6 for the function shown below.



215

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Let f(x) on [0,
3

2
] be given as pictured. For n = 6, ∆x = (

3

2
− 0)/6 =

1

4
, {xk}6k=0 =

{

0,
1

4
,
1

2
,
3

4
, 1,

5

4
,
3

2

}

. Therefore

L6 =
1

4

5∑

k=0

f(xk) =
1

4
(2.4 + 2.35 + 2.25 + 2 + 1.65 + 1.05) = 2.925

R6 =
1

4

6∑

k=1

f(xk) =
1

4
(2.35 + 2.25 + 2 + 1.65 + 1.05 + 0.65)

= 2.4875

M6 =
1

4

6∑

k=1

f

(

xk −
1

2
∆x

)

=
1

4
(2.4 + 2.3 + 2.2 + 1.85 + 1.45 + 0.8) = 2.75

3. Evaluate the following sums (See formulas (3)–(5)).

a.
20∑

k=1

2k + 1

20∑

k=1

(2k + 1) = 2
20∑

k=1

k +
20∑

k=1

1 = 2

(
202

2
+

20

2

)

+ 20 = 440.

b.
10∑

ℓ=1

2(ℓ3 − 2ℓ2)
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10∑

ℓ=1

(ℓ3 − 2ℓ2) =
10∑

ℓ=1

ℓ3 − 2
10∑

ℓ=1

ℓ2

=

(
104

4
+

103

2
+

102

4

)

− 2

(
103

3
+

102

2
+

10

6

)

= 2255.

4. Evaluate lim
N→∞

N∑

i=1

i2 − i+ 1

N3

Let

sN =
N∑

i=1

i2 − i+ 1

N3
.

Then

sN =

N∑

i=1

i2 − i+ 1

N3
=

1

N3

[(
N∑

i=1

i2

)

−
(

N∑

i=1

i

)

+

(
N∑

i=1

1

)]

=
1

N3

[(
N3

3
+

N2

2
+

N

6

)

−
(
N2

2
+

N

2

)

+N

]

=
1

3
+

2

3N2
.

Therefore, lim
N→∞

sN =
1

3
.

5. Use formulas (3)–(5) to find a formula for RN for f(x) = 3x2 − x + 4 over the interval
[0, 1].

Let f(x) = 3x2 − x + 4 on the interval [0, 1]. Then ∆x =
1− 0

N
=

1

N
and a = 0.

Hence,

RN = ∆x

N∑

j=1

f(0 + j∆x) =
1

N

N∑

j=1

(

3j2
1

N2
− j

1

N
+ 4

)

=
3

N3

N∑

j=1

j2 − 1

N2

N∑

j=1

j +
4

N

N∑

j=1

1

=
3

N3

(
N3

3
+

N2

2
+

N

6

)

− 1

N2

(
N2

2
+

N

2

)

+
4

N
N

= 1 +
3

2N
+

1

2N2
− 1

2
− 1

2N
+ 4
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and

lim
N→∞

RN = lim
N→∞

(

4.5 +
1

N
+

1

2N2

)

= 4.5.

6. Evaluate lim
N→∞

1

N

N∑

j=1

√

1−
(
4j

N

)2

by interpreting the limit as an area.

The limit

lim
N→∞

RN = lim
N→∞

1

N

N∑

j=1

√

1−
(

j

N

)2

represents the area between the graph of y = f(x) =
√
1− x2 and the x-axis over the

interval [0, 1]. This is the portion of the circular disk x2 + y2 ≤ 1 that lies in the first

quadrant. Accordingly, its area is
1

4
π (1)2 =

π

4
.
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5.2. The Definite Integral.

Class Time AB 2 periods; BC 1 period. Essential.

Key Points

• Definition of the definite integral.
• Properties of the definite integral (Theorems 2–5).
• Interpretation of “signed area.”

Lecture Material
Explain that when we use the summation technique discussed in Section 5.1, we can use
a partition with unequal subinterval lengths and the heights of the rectangles can be f
evaluated at any point in the subinterval including the endpoints. The miracle is that
if f is continuous, the limits of all the Riemann sums, as the norm of the partition P
goes to 0, are all the same real number. This number is called the definite integral of f

from a to b, denoted

∫ b

a

f(x) dx. Next discuss the graphical interpretation of the definite

integral when f is nonnegative over [a, b] and when f is not always nonnegative over [a, b].
Finally, discuss the properties of the definite integral, including the integral of a constant
over and interval, the linearity of the definite integral, reversing the limits of integration,
additivity property for adjacent intervals, and the Comparison Theorem. If time permits,

use the right-endpoint approximations to prove that for b > 0,

∫ b

0

x2 dx =
b3

3
.

Discussion Topics/Class Activities

Lead a discussion of the difference between the graphs of

∫ b

a

f(x) dx and

∫ b

a

|f(x)| dx.
Use the same function, such as f(x) = 3− x on intervals containing x = 3, and compare
and contrast the answers.

Suggested Problems
Exercises 1, 3, 5, 7, 9, 23, 25, 31, 33, 43–46, 59, 61, 75, 83–84
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Worksheet 5.2.
The Definite Integral

1. Calculate

∫ 5

2

(2x+ 1) dx in two ways: as a limit lim
N→∞

RN and using geometry.

1 2 3 4 5 6

2

4

6

8

10

1 2 3 4 5 6

2

4

6

8

10

2. The graph of f(x) =

{

−
√

1− (x− 1)2 if 0 ≤ x ≤ 2
√

4− (x− 4)2 if 2 < x ≤ 6
consists of two semicircles:

1 2 3 4 5 61 2 3 4 5 6

Evaluate the following integrals.

a.

∫ 2

0

f(x) dx

b.

∫ 6

0

f(x) dx

c.

∫ 4

1

f(x) dx
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3. Let g(x) =

{
x− 1 if 0 ≤ x ≤ 3
8− 2x if 3 < x ≤ 5

. Use the graph of g(x) to evaluate the integrals.

1 2 3 4 5

-2

-1

1

2

1 2 3 4 5

-2

-1

1

2

a.

∫ 3

0

g(x) dx

b.

∫ 5

0

g(x) dx

4. Use the basic properties of the integral and Equations (4)–(6) to calculate the following
integrals.

a.

∫ 4

1

6x2 dx

b.

∫ 3

−2

3x+ 4 dx

c.

∫ 3

1

|2x− 4| dx
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Solutions to Worksheet 5.2

1. Calculate

∫ 5

2

(2x+ 1) dx in two ways: as a limit lim
N→∞

RN , and using geometry.

1 2 3 4 5 6

2

4

6

8

10

1 2 3 4 5 6

2

4

6

8

10

RN =
N∑

k=1

(
2
(
2 + 3k

N

)
+ 1
)

3
N

=
N∑

k=1

(
15
N
+ 18k

N2

)

= 15 +
18

N2

N(N + 1)

2
→ 24 as N → ∞.

2. The graph of f(x) =

{

−
√

1− (x− 1)2 if 0 ≤ x ≤ 2
√

4− (x− 4)2 if 2 < x ≤ 6
consists of two semicircles:

1 2 3 4 5 61 2 3 4 5 6

Evaluate the following integrals

a.

∫ 2

0

f(x) dx

The definite integral

∫ 2

2

f(x) dx is the signed area of a semicircle of radius 1 which lies

below the x-axis. Therefore,
∫ 2

0

f(x) dx = −1

2
π (1)2 = −π

2
.
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b.

∫ 6

0

f(x) dx

The definite integral

∫ 6

0

f(x) dx is the signed area of a semicircle of radius 1 which lies

below the x-axis and a semicircle of radius 2 which lies above the x-axis. Therefore,
∫ 6

0

f(x) dx =
1

2
π (2)2 − 1

2
π (1)2 =

3π

2
.

c.

∫ 4

1

f(x) dx

The definite integral

∫ 4

1

f(x) dx is the signed area of one-quarter of a circle of radius

1 which lies below the x-axis and one-quarter of a circle of radius 2 which lies above the
x-axis. Therefore,

∫ 4

1

f(x) dx =
1

4
π (2)2 − 1

4
π (1)2 =

3

4
π.

3. Let g(x) =

{
x− 1 if 0 ≤ x ≤ 3
8− 2x if 3 < x ≤ 5

. Use the graph of g(x) given below to evaluate the

following integrals.

1 2 3 4 5

-2

-1

1

2

1 2 3 4 5

-2

-1

1

2

a.

∫ 3

0

g(x) dx

The region bound by the curve y = g(x) and the x-axis over the interval [0, 3] is

comprised of two right triangles, one with area
1

2
below the axis, and one with area 2

above the axis. The definite integral is therefore equal to 2− 1

2
=

3

2
.
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b.

∫ 5

0

g(x) dx

The region bound by the curve y = g(x) and the x-axis over the interval [3, 5] is
comprised of another two right triangles, one with area 1 above the axis and one with
area one below the axis. The definite integral is therefore equal to zero.

4. Use the basic properties of the integral and formulas (4)–(6) to calculate the following
integrals.

a.

∫ 4

1

6x2 dx
∫ 4

1

6x2 dx = 6

∫ 4

0

x2 dx− 6

∫ 1

0

x2dx = 6

(
1

3
(4)3 − 1

3
(1)3

)

= 126.

b.

∫ 3

−2

3x+ 4 dx

∫ 3

−2

(3x+ 4) dx = 3

∫ 3

−2

x dx+ 4

∫ 3

−2

dx

= 3

(∫ 0

−2

x dx+

∫ 3

0

x dx

)

+ 4(3− (−2))

= 3

(∫ 3

0

x dx−
∫ −2

0

x dx

)

+ 20

= 3

(
1

2
32 − 1

2
(−2)2

)

+ 20 =
55

2
.

c.

∫ 3

1

|2x− 4| dx
The area between |2x − 4| and the x axis consists of two triangles above the x-axis,

each width width 1 and height 2, and hence with area 1. The total area, and hence the
definite integral, is 2.
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5.3. The Fundamental Theorem of Calculus, Part I.

Class Time AB 2 periods; BC 1 period. Essential.

Key Points

• Fundamental Theorem of Calculus, Part I: If f(x) is continuous on [a, b] and has

an antiderivative on [a, b], then

∫ b

a

f(x) dx = F (b)− F (a).

• The Fundamental Theorem of Calculus, Part I enables us to evaluate the definite
integral in the cases where the integrand has an antiderivative.

Lecture Material

Illustrate the Fundamental Theorem of Calculus, Part I, with the example

∫ b

0

x2 dx =
b3

3
.

State the Fundamental Theorem of Calculus, Part I, and prove it or at least sketch an
outline of the proof. Do several examples where the integrand has a straightforward
antiderivative, such as Exercises 9, 13, 16, 33, and 38.

Discussion Topics/Class Activities
With appropriate guidance, students could work Exercise 62 at their desks.

Suggested Problems
Exercises 1, 5, 11, 13, 17, 25, 27, 33, 35, 37, 43
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Worksheet 5.3.
The Fundamental Theorem of Calculus, Part I

1. Sketch the graph of f(x) = cos x over the interval [−π/2, π/2] and use Part I of the
Fundamental Theorem of Calculus (FTC I) to calculate the enclosed area.

-

Π

����

2
-

Π

����

4
Π

����

4
Π

����

2

0.2

0.4

0.6

0.8

1

1.2

2. Evaluate using FTC I.

a.

∫ 2

−2

(10x9 + 3x5) dx

b.

∫ 4

0

√
x dx
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c.

∫ 9

4

16 + t

t2
dt

d.

∫ 3π/4

π/4

sin θ dθ

e.

∫ 5

0

|x2 − 4x + 3| dx (Write as a sum if integrals without absolute values—then apply

FTC I.)
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Solutions to Worksheet 5.3

1. Sketch the graph of f(x) = cos x over the interval [−π/2, π/2] and use part I of the
Fundamental Theorem of Calculus (FTC I) to calculate the enclosed area.

-

Π

����

2
-

Π

����

4
Π

����

4
Π

����

2

0.2
0.4
0.6
0.8
1

A =

∫ π/2

0

cosx dx = sin x |π/20 = 1− 0 = 1.

2. Evaluate using FTC I.

a.

∫ 2

−2

(10x9 + 3x5) dx

∫ 2

−2

(10x9 + 3x5) dx =

(

x10 +
1

2
x6

)∣
∣
∣
∣

2

−2

=

(

210 +
1

2
26
)

−
(

210 +
1

2
26
)

= 0.

b.

∫ 4

0

√
x dx

∫ 4

0

√
x dx =

∫ 4

0

x1/2 dy =
2

3
x3/2

∣
∣
∣
∣

4

0

=
2

3
(4)3/2 − 2

3
(0)3/2 =

16

3
.

c.

∫ 9

4

16 + t

t2
dt

∫ 9

4

16 + t

t2
dt =

∫ 9

4

16t−2 + t−1 dt = −16t−1 + ln t
∣
∣9

4
=

20

9
+ ln

9

4
∫ 3π/4

π/4

sin θ dθ

∫ 3π
4

π
4

sin θ dθ = − cos θ|
3π
4
π
4

=

√
2

2
+

√
2

2
=

√
2.
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d.

∫ 5

0

|x2 − 4x + 3| dx (Write as a sum if integrals without absolute values—then apply

FTC I.)

∫ 5

0

|x2 − 4x+ 3| dx =

∫ 5

0

|(x− 3)(x− 1)| dx

=

∫ 1

0

(x2 − 4x+ 3) dx+

∫ 3

1

−(x2 − 4x+ 3) dx+

∫ 5

3

(x2 − 4x+ 3) dx

= (
1

3
x3 − 2x2 + 3x)

∣
∣
∣
∣

1

0

− (
1

3
x3 − 2x2 + 3x)

∣
∣
∣
∣

3

1

+

(
1

3
x3 − 2x2 + 3x)

∣
∣
∣
∣

5

3

= (
1

3
− 2 + 3)− 0− (9− 18 + 9) + (

1

3
− 2 + 3) +

(
125

3
− 50 + 15)− (9− 18 + 9)

=
28

3
.
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5.4. The Fundamental Theorem of Calculus, Part II.

Class Time AB and BC 2 periods. Essential.

Key Points

• The area function is

A(x) =

∫ x

a

f(t) dt

• The Fundamental Theorem of Calculus, Part II: If f(x) is a continuous function

on [a, b] and A(x) =

∫ x

a

f(t) dt, then A′(x) = f(x).

• If A(x) =

∫ g(x)

a

f(t) dt, then A′(x) = f(g(x))g′(x).

Lecture Material
Define the area function and use the provided slide to illustrate it. State the Fundamental
Theorem of Calculus, Part II, and prove it or at least sketch an outline of the proof.

Consider the example

∫ x

1

t2 dt. Integrate and then take the derivative. Then do the

problem using the Fundamental Theorem of Calculus, Part II. Finally, do an example that
combines the Fundamental Theorem of Calculus, Part II and the Chain Rule. Example
4 and Exercise 14 are good examples.

An alternative proof is this, which starts with the conclusion of the FTC part 1:
∫ x

a

f(t) dt = F (x)− F (a), so

d

dx

∫ x

a

f(t) dt =
d

dx
(F (x)− F (a))

= F ′(x)− 0 = f(x)

Go over the “graphical insight” box and Figure 7. This way of determining the prop-
erties of a function (increasing/decreasing, local extreme values, etc.) from the definite
integral is the same as was done in Chapter 4. Many students find this approach easier
to understand.

Discussion Topics/Class Activities
First day: Exercise 39 or 43 or something similar could be discussed; Second day: Go
over the “Graphical Insight” box on page 281. This approach to the relationship between
f and f ′ is often tested on the AP Calculus exams.

Suggested Problems (2 assignments)
Exercises 1, 3, 5, 7, 9, 15, 17, 19, 21, 25, 29, 31, 35–39, 43, 45
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Worksheet 5.4.
The Fundamental Theorem of Calculus, Part II

1. If G(x) =

∫ x

1

tan t dt, find

a. G(1)

b. G′(π/4)

2. Find a formula for the function represented by the integral.

a.

∫ x

2

(t2 − t) dt

b.

∫ x

π/4

cosu du

3. Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral.

a. f(x) =
√
x4 + 1, F (3) = 0

b. f(x) = sin(x3), F (−π) = 0

4. Calculate the derivatives.

a.
d

dx

∫ x

1

sin(t2) dt
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b.
d

dx

∫ x3

1

tan t dt

5. Sketch the graph of A(x) =

∫ x

0

f(t) dt for the function f(t)over the interval [0, 4].

1 2 3 4

-1

1

2

3

é

é

é
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6. Let A(x) =

∫ x

0

f(t) dt for f(t) the piecewise linear function shown. Find a formula for

A(x) (actually, two formulas–one for 0 ≤ x ≤ 1 and another for 1 ≤ x ≤ 3) and sketch
the graph of A(x).

1 2 3

1

2

3

0.5 1 1.5 2 2.5 3
x

1

2

3

4

5
AHxL
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Solutions to Worksheet 5.4

1. If G(x) =

∫ x

1

tan t dt, find

a. G(1)

b. G′(π/4)

By definition, G(1) =

∫ 1

1

tan t dt = 0. By FTC, G′(x) = tanx, whence G′(0) =

tan 0 = 0 and G′(
π

4
) = tan

π

4
= 1.

2. Find a formula for the function represented by the integral.

a.

∫ x

2

(t2 − t) dt

F (x) =

∫ x

2

(t2 − t) dt = (
1

3
t3 − 1

2
t2)

∣
∣
∣
∣

x

2

=
1

3
x3 − 1

2
x2 − 2

3

b.

∫ x

π/4

cosu du

F (x) =

∫ x

π/4

cos u du = sin u|xπ/4 = sin x−
√
2

2

F (x) =

∫ x

2

(t2 − t) dt = (
1

3
t3 − 1

2
t2)

∣
∣
∣
∣

x

2

=
1

3
x3 − 1

2
x2 − 2

3

3. Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral.

a. f(x) =
√
x4 + 1, F (3) = 0.

The antiderivative F (x) of f(x) =
√
x4 + 1 satisfying F (3) = 0 is

F (x) =

∫ x

3

√
t4 + 1 dt

b. f(x) = sin(x3), F (−π) = 0.
The antiderivative F (x) of f(x) = sin(x3) satisfying F (−π) = 0 is

F (x) =

∫ x

−π

sin(t3) dt
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4. Calculate the derivatives.

a.
d

dx

∫ x

1

sin(t2) dt

By FTC II,
d

dx

∫ x

1

sin(t2) dt = sin x2.

b.
d

dx

∫ x3

1

tan t dt

By combining the FTC and the Chain Rule,

G′(x) = tan x3 · 3x2 = 3x2 tanx3

5. Sketch the graph of A(X) =

∫ x

0

f(t) dt for the function f(t) over the interval [0, 4].

1 2 3 4

-1

1

2

3

é

é

é

A(x) =







2x if 0 ≤ x < 1
1 + x if 1 ≤ x < 2
5− x if 2 ≤ x < 3
2 if 3 ≤ x < 4
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1 2 3 4

1

2

3

6. Let A(x) =

∫ x

0

f(t) dt for f(t) the piecewise linear function shown below. Find a formula

for A(x) (actually, two formulas–one for 0 ≤ x ≤ 1 and another for 1 ≤ x ≤ 3) and sketch
the graph of A(x).

1 2 3

1

2

3

A(x) =

{
x if 0 ≤ x < 1

1

2
(x2 + 1) if 1 ≤ x ≤ 3
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0.5 1 1.5 2 2.5 3

1

2

3

4

5
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5.5. Net or Total Change as the Integral of a Rate.

Class Time AB 2 periods; BC 1 period. Essential.

Key Points

• Net change as an integral

s(t2)− s(t1) =

∫ t2

t1

s′(t) dt

• If an object is traveling in a straight line at velocity v(t), then the net change

(displacement) during [t1, t2] =

∫ t2

t1

v(t) dt.

• The total distance traveled during [t1, t2] =

∫ t2

t1

|v(t)| dt.

Lecture Material
Introduce the following problem. Water is flowing into an empty bucket at a constant
rate of r(t) gallons per second. Ask how much water is in the bucket after 4 seconds.
Show students that this is just the definite integral of r(t) over the interval [0, 4]. If the
flow rate r(t) varies continuously over an interval [t1, t2], then the quantity of water in
the bucket is equal to the area under the graph of r(t) from t1 to t2. This is because if
s(t) is the amount of water in the bucket at time t, then s′(t) = r(t). In general, the
quantity s(t2)− s(t1) is called the net change in s(t) over the interval [t1, t2] and is equal

to

∫ t2

t1

s′(t) dt. Work Exercise 4.

We can apply the net change formula to find the displacement of an object traveling

in a straight line at a velocity of v(t). Thus displacement during [t1, t2] =

∫ t2

t1

v(t) . To

calculate the actual distance traveled rather than displacement, we must integrate the
absolute value of velocity, which is the speed |v(t)|. Work Exercise 8.

The economic applications are not tested on the AP Calculus exams, but they are
good applications to cover if you have time.

Discussion Topics/Class Activities
The analysis of the motion of a particle on a number line (AB and BC) and in the plane
(BC only) is often tested on the AP exams. Do problems like Exercises 27 and 28 and
supplement with actual AP exam questions.

Suggested Problems
Exercises 1, 2, 4, 8, 9, 10, 19, 25
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Worksheet 5.5.
Net or Total Change as the Integral of a Rate

1. Find the displacement over the time interval [1, 6] of a helicopter whose vertical velocity
at time t is

v(t) = .02t2 + t ft/s

2. A particle is moving along a straight line with velocity v(t) = cos t m/s. Find (a) the
total displacement and (b) the total distance traveled over the time interval [0, 4π].
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3. The velocity (ft/s) of a car is recorded at half-second intervals:

t: 0 .5 1 1.5 2 2.5 3 3.5 4

v(t): 0 12 20 29 38 44 32 35 30

Use the average of the left- and right-endpoint approximations as illustrated to estimate
the total distance traveled over the time interval [0, 4].

1 2 3 4
time

10

20

30

40

velocity

4. The heat capacity C(T ) of a substance is the amount of energy (joules) required to raise
the temperature of one gram of the substance by one degree (◦C) when its temperature
is T .

a. Explain why the energy required to raise the temperature of one gram from T1 to T2

is

∫ T2

T1

C(T ) dT .

b. If a substance has heat capacity C(T ) = 6 + .2
√
T , calculate the energy required to

raise the temperature of one gram of the substance from 50◦ to 100◦C.
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Solutions to Worksheet 5.5

1. Find the displacement over the time interval [1,6] of a helicopter whose vertical velocity
at time t is

v(t) = .02t2 + t ft/s.

Given v(t) =
1

50
t2 + t ft/s, the change in height over [1, 6] is

∫ 6

1

v(t) dt =

∫ 6

1

(
1

50
t2 + t) dt = (

1

150
t3 +

1

2
t2)

∣
∣
∣
∣

6

1

=

(
1

150
(6)3 +

1

2
(6)2

)

−
(

1

150
(1)3 +

1

2
(1)2

)

=
284

15
≈ 18.93 ft.

2. A particle is moving along a straight line with velocity v(t) = cos t m/s. Find (a) the
total displacement and (b) the total distance traveled over the time interval [0, 4π].

Total displacement is given by

∫ 4π

0

cos t dt = sin t|4π0 = 0 m, while total distance is

given by
∫ 4π

0

|cos t| dt =

∫ π/2

0

cos t dt+

∫ 3π/2

π/2

− cos t dt+

∫ 5π/2

3π/2

cos t dt+

∫ 7π/2

5π/2

− cos t dt+

∫ 4π

7π/2

cos t dt

= sin t|π/20 − sin t|3π/2π/2 + sin t|5π/23π/2 − sin t|7π/25π/2 + sin t|4π7π/2 = 8 m

3. The velocity (ft/s) of a car is recorded at half-second intervals below.

t : 0 .5 1 1.5 2 2.5 3 3.5 4

v(t) : 0 12 20 29 38 44 32 35 30

Use the average of the left- and right-endpoint approximations as illustrated below to
estimate the total distance traveled over the time interval [0, 4].
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1 2 3 4
time

10

20

30

40

velocity

Let ∆x = .5. Then

RN = .5 · (12 + 20 + 29 + 38 + 44 + 32 + 35 + 30) = 120 ft.

LN = .5 · (0 + 12 + 20 + 29 + 38 + 44 + 32 + 35) = 105 ft.

The average of RN and LN is 112.5 ft

4. The heat capacity C(T ) of a substance is the amount of energy (joules) required to raise
the temperature of one gram of the substance by one degree (◦C) when its temperature
is T .

a. Explain why the energy required to raise the temperature of one gram from T1 to T2

is

∫ T2

T1

C(T ) dT .

Since C(T ) is the energy required to raise the temperature of one gram of a substance by
one degree when its temperature is T , the total energy required to raise the temperature

from T1 to T2 is given by the definite integral

∫ T2

T1

C(T ) dT . As C(T ) > 0, the definite

integral also represents the area under the graph of C(T ).

b. If a substance has heat capacity C(T ) = 6 + .2
√
T , calculate the energy required to

raise the temperature of one gram of the substance from 50◦ to 100◦ C.
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If C(T ) = 6 + .2
√
T = 6 +

1

5
T 1/2, then the energy required to raise the temperature

from 50◦C to 100◦C is

∫ 100

50

C(T ) dT or

∫ 100

50

(

6 +
1

5
t1/2
)

dt =

(

6t+
2

15
t3/2
)∣
∣
∣
∣

100

50

= (6(100) +
2

15
(100)3/2)− (6(50) +

2

15
(50)3/2)

=
1300− 100

√
2

3
≈ 386.19 Joules
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5.6. Substitution Method.

Class Time AB and BC 2 periods. Essential.

Key Points

• Substitution Method of integrating.
• Change of Variables Formula for Definite Integrals.

Lecture Material
Explain the Substitution Method as the Chain Rule “in reverse.” Illustrate with examples

such as

∫

2x cos(x2) dx,

∫ √
1 + 2x dx, and

∫
x√

x2 + 9
dx. Explain that the technique

doesn’t work for

∫

cos(x2) dx and

∫ √
1 + 2x2 dx.

State the Change of Variables Formula for Definite Integrals and work two or three
examples. Explain that you can change the limits to the new variable or keep the limits
the same and change everything back to the old variable at the end.

Discussion Topics/Class Activities

Have students work

∫ 2

0

x+ 3

x2 + 6x+ 1
dx at their desks.

Suggested Problems (2 assignments)
Exercises 7, 11, 13, 15, 17, 21, 31, 33, 74, 75, 76, 79, 81, 85, 87, 89
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Worksheet 5.6.
Substitution Method

1. Evaluate the indefinite integral.

a.

∫

x(x+ 1)9 dx

b.

∫

sin(2x− 4) dx

c.

∫
x3

(x4 + 1)4
dx

d.

∫ √
4x− 1 dx

e.

∫

x cos(x2) dx

f.

∫

sin5 x cosx dx

g.

∫

sec2 x tan4 x dx
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2. Use the Change of Variables Formula to evaluate the definite integral.

a.

∫ 1

0

x

(x2 + 1)3
dx

b.

∫ 17

10

(x− 9)−2/3 dx

c.

∫
dx

(2 +
√
x)3

(Use u = 2 +
√
x.)
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Solutions to Worksheet 5.6

1. Evaluate the following indefinite integrals.

a.

∫

x(x+ 1)9 dx

Let u = x+ 1. Then x = u− 1 and du = dx. Hence
∫

x(x+ 1)9 dx =

∫

(u− 1)u9 du =

∫

(u10 − u9) du

=
1

11
u11 − 1

10
u10 + C =

1

11
(x+ 1)11 − 1

10
(x+ 1)10 + C.

b.

∫

sin(2x− 4) dx

Let u = 2x− 4. Then du = 2 dx or
1

2
du = dx. Hence

∫

sin(2x− 4) dx =
1

2

∫

sin u du = −1

2
cos u+ C = −1

2
cos(2x− 4) + C

c.

∫
x3

(x4 + 1)4
dx

Let u = x4 + 1. Then du = 4x3 dx or
1

4
du = x3 dx. Hence

∫
x3

(x4 + 1)4
dx =

1

4

∫
1

u4
du = − 1

12
u−3 + C = − 1

12
(x4 + 1)−3 + C

d.

∫ √
4x− 1 dx

Let u = 4x− 1. Then du = 4 dx or
1

4
du = dx. Hence

∫ √
4u− 1 dx =

1

4

∫

u1/2 du =
1

4
· 2
3
u3/2 + C =

1

6
(4x− 1)3/2 + C

e.

∫

x cos(x2) dx

Let u = x2. Then du = 2x dx or
1

2
du = x dx. Hence,

∫

x cos(x2) dx =
1

2

∫

cosu du =
1

2
sin u+ C =

1

2
sin(x2) + C
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f.

∫

sin5 x cosx dx

Let u = sin x. Then du = cosx dx. Hence
∫

sin5 x cos x dx =

∫

u5 du =
1

6
u6 + C =

1

6
sin6 x+ C

∫

sec2 x tan4 x dx Let u = tan x. Then du = sec2 x dx. Hence

∫

sec2 x tan4 x dx =

∫

u4 du =
1

5
u5 + C =

1

5
tan5 x+ C

2. Use the change of variables formula to evaluate the following definite integrals.

a.

∫ 1

0

x

(x2 + 1)3
dx

Let u = x2 + 1. Then du = 2x dx or
1

2
du = x dx. Hence

∫ 1

0

x

(x2 + 1)3
dx =

1

2

∫ 2

1

1

u3
du =

1

2
· −1

2
u−2

∣
∣
∣
∣

2

1

= − 1

16
+

1

4
=

3

16
= 0.1875.

b.

∫ 17

10

(x− 9)−2/3 dx

Let u = x− 9. Then du = dx. Hence
∫ 17

10

(x− 9)−2/3 dx =

∫ 8

1

u−2/3 dx

= 3u1/3
∣
∣
8

1

= 3 (2− 1) = 3

c.

∫
dx

(2 +
√
x)3

(Use u = 2 +
√
x.)

Let u = 2 +
√
x. Then du =

1

2
√
x
dx, so that

2
√
x du = dx

2(u− 2) du = dx
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From this, we get:
∫

dx

(2 +
√
x)3

=

∫

2
u− 2

u3
du

= 2

∫
(
u−2 − 2u−3

)
du

= 2
(
−u−1 + u−2

)
+ C

= 2

(

− 1

2 +
√
x
+

1

(2 +
√
x)2

)

+ C

= 2

(−2−√
x+ 1

(2 +
√
x)2

)

+ C

= −2
1 +

√
x

(2 +
√
x)2

+ C
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5.7. Further Transcendental Functions.

Class Time AB and BC 1 period. Essential.

Key Points

• lnx =

∫ x

1

dt

t
, x > 0.

• Integral formulas for inverse trigonometric functions:

∫
dx√
1− x2

= sin−1 x+ C

∫
dx

x2 + 1
= tan−1 x+ C

∫
dx

|x|
√
x2 − 1

= sec−1 x+ C

• Integrals of exponential functions (b > 0, b 6= 1):

∫

exdx = ex + C,

∫

bxdx =
bx

ln b
+ C

Lecture Material

First point out that the integral formula

∫ b

a

dx

x
= ln |a

b
| can be used to obtain ln x =

∫ x

1

dt

t
for x > 0 by setting a = 1 and b = x. Work Exercise 4 to illustrate the use of this

formula. Then point out that in a similar fashion, the derivative formulas for the inverse
trigonometric functions can be used obtain corresponding integration formulas. Work
Exercises 16 and 20 to illustrate the use of these formulas. Similarly, the differentiation

formula for ex and bx can be used to obtain the integration formulas

∫

exdx = ex + C

and

∫

bxdx =
bx

ln b
+ C. Work Exercises 28 and 34 to illustrate the use of this formula.

Discussion Topics/Class Activities
Work Exercise 73 to give an antiderivative for sin−1 t.

Suggested Problems
Exercises 1–9 odd (basic, definite), 13–31 every other odd (indefinite), Review of inte-
gration: 33–69 every other odd (indefinite)
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Worksheet 5.7.
Further Transcendental Functions

Evaluate the integral.

1.

∫ 4

2

dt

3t+ 4

2.

∫
dt√

1− 16t2

3.

∫
dx

4 + x2

4.

∫ 1

0

3−xdx

5.

∫

e4xdx
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Solutions to Worksheet 5.7

Evaluate the integral.

1.

∫ 4

2

dt

3t+ 4
∫ 4

2

dt

3t+ 4
=

1

3
ln

16

10
=

1

3
ln

8

5

2.

∫
dt√

1− 16t2∫
dt√

1− 16t2
=

1

4
sin−1(4t)

3.

∫
dx

4 + x2
∫

dx

4 + x2
=

1

2
tan−1

(x

2

)

4.

∫ 1

0

3−xdx
∫ 1

0

3−xdx =
2

3 ln 3
=

2

ln 27

5.

∫

e4xdx
∫

e4xdx =
e4x

4
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5.8. Exponential Growth and Decay.

Class Time AB and BC 2 periods. Very important.

Key Points

• Exponential growth, P (t) = P0e
kt, and decay, P (t) = P0e

−kt, k > 0.
• Differential equation y′ = ky.
• Doubling times and half-lives.
• Compound interest.

• ex = lim
n→∞

(

1 +
x

n

)n

.

• Continuously compounded interest.

Lecture Material
Unconstrained population growth and radioactive decay are important examples of ex-
ponential growth and decay. Example 1 illustrates exponential growth and Example 6
illustrates exponential decay. Applications include doubling time (Example 4) and half-
life (Example 5). If the rate of change is proportional to the amount present at time t,
then we have the differential equation y′(t) = ky(t) for some k > 0. The unique solution
of this differential equation is y(t) = y(0)ekt. Work Examples 2 and 3.

If $P0 is invested at an annual rate of r compounded M times per year, then the value
of the investment after t years is

P (t) = P0

(

1 +
r

M

)Mt

Compare the value of an initial investment of $1000 after 10 years at an annual rate of
5% compounded

(1) 1 time/year (simple interest): 1000(1 + .05/1)10 ≈ 1628.89
(2) 12 times/year (compounded monthly): 1000(1 + .05/12)120 ≈ 1647.01
(3) 26 times/year (biweekly): 1000(1 + .05/26)260 ≈ 1647.93
(4) 365 times/year (daily): 1000(1 + .05/365)3650 ≈ 1648.66
(5) every minute (365 ∗ 24 ∗ 60 = 525600 times/year):

1000(1 + .05/525600)5256000 ≈ 1648.72

It appears that as M → ∞, the values 1000

(

1 +
.05

M

)M∗10
approach a limit L ≈

1648.72. This section provides a very nice argument

(

1 +
1

n

)n

→ e as n → ∞ based

on the Squeeze Theorem and geometric bounds for ln
(

1 +
x

n

)

=

∫ 1+ x
n

1

1

t
dt (see Figure
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11). Exercise 25 asks for a modification to prove ex = lim
n→∞

(

1 +
x

n

)n

. Thus $P0 invested

at an annual rate r compounded continuously has value after t years

P (t) = P0e
rt = lim

M→∞
P0

(

1 +
rt

Mt

)Mt

Our computation of the value of an initial investment of $1000 after 10 years at an
annual rate of 5% compounded every minute shows that P0e

.05∗10 ≈ 1648.7212707 is a
reasonable approximation to the value of 1000(1 + .05/M)10∗M for values M ≥ 12.

Present value of an income stream is not tested on the AB or BC exams and may be
omitted.

Discussion Topics/Class Activities
Exercise 25 outlines a discussion of Moore’s Law.

Suggested Problems
Exercises 1, 5, 7, 11, 12, 15, 31, 33
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Worksheet 5.8.
Exponential Growth and Decay

1. A quantity P obeys the exponential growth law P = 2000e1.3t (t in years).

a. What is the doubling time for P ?

b. At what time is P = 10000?

2. Radium-226 has a half-life of 1,622 years. If a sample initially contains 200 grams of
Radium-226, how much will it contain 500 years later?

3. Find the solution of the differential equation y′ = .7y satisfying y(0) = 15.

4. C14 decays exponentially with decay constant k = −.000121A years−1. Suppose an anal-
ysis of cave paintings indicated a C14 to C12 ratio of 3% of that found in the atmosphere.
Approximate the age of the paintings.
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5. Suppose that $ 1000 is deposited in an account paying 4% annual interest. Compute the
balance after 12 years if the interest is compounded

a. monthly.

b. daily.

c. continuously.

6. If an investment increases in value at a continuous compounded annual rate of 6%, how
long will it take to double in value?
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Solutions to Worksheet 5.8

1. A quantity P obeys the exponential growth law P = 2000e1.3t (t in years).

a. What is the doubling time for P ?
t = .53319.

b. At what time is P = 10000?
t = 1.23803

2. Radium-226 has a half-life of 1,622 years. If a sample initially contains 200 grams of
Radium-226, how much will it contain 500 years later?

161.523 grams

3. Find the solution of the differential equation y′ = .7y satisfying y(0) = 15.
y = 15e.7t

4. C14 decays exponentially with decay constant k = −.000121 years−1. Suppose an analysis
of cave paintings indicated a C14 to C12 ratio of 3% of that found in the atmosphere.
Approximate the age of the paintings.

The age of the paintings is approximately
ln(.03)

k
≈ 28980 years.

5. Suppose that $ 1000 is deposited in an account paying 4% annual interest. Compute the
balance after 12 years if the interest is compounded

a. monthly.
A = 1000(1 + .04/12)12∗12 ≈ 1614.78

b. daily.
A = 1000(1 + .04/365)12∗365 ≈ 1616.03

c. continuously.
A = 1000e.04∗12 ≈ 1616.07

6. If an investment increases in value at a continuous compounded annual rate of 6%, how
long will it take to double in value?

t =
ln 2

.06
≈ 11.5525 years
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Chapter 5 AP Problems

For 1–3 and 6–9, a calculator may be used. For 4 and 5, no calculator allowed.

1. Use the values of f(x), a continuous function, given in the table below to find a trapezoidal

approximation of

∫ 9

0

f(x) dx with 3 equal subdivisions.

x 0 1 2 3 4 5 6 7 8 9
f(x) 4 6 7 8 7 5 4 6 7 10

A. 39

B. 48

C. 57

D. 66

E. 78

2. In the figure below, the area of region A is 2 and the area of region B is 11. Find
∫ 3

0

(f(x)− 2) dx.

1 32A
x

y

B

A. −3

B. 3

C. 7

D. 11

E. 15
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3. If a particle is moving in a straight line with a velocity of v(t) = 2t − 3 ft/sec and its
position at t = 2 sec is −10 ft, find its position at t = 5 sec.

A. −22 ft

B. 2 ft

C. 10 ft

D. 12 ft

E. 22 ft

4. If f(x) =

∫ x2

0

√
1 + t3 dt, then f ′(

√
2) =?

A.
√
3

B. 3

C. 2
√
14

D. 6
√
2

E. 12

5.

∫

2x2(sec(x3))2 dx =?

A. −2

3
tan(x3) + C

B. 2 tan(x3) + C

C. −2 tan(x3) + C

D.
2

3
tan(x3) + C

E. 6 tan(x3) + C
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6. A car is traveling on a straight road. The velocity of the car is recorded in the table
below in 20 second intervals for 0 ≤ t ≤ 120 seconds.

t (sec) 0 20 40 60 80 100 120
v(t) (ft/sec) 45 58 65 72 68 63 48

a. Using correct units, explain the meaning of

∫ 120

0

v(t) dt in terms of this car.

b. Use a midpoint Riemann Sum with 3 equal subintervals to approximate

∫ 120

0

v(t) dt.

c. The car’s velocity can be estimated by v(t) =
−7

1000
t2 +

9

10
t + 42 for 0 ≤ t ≤ 120 sec.

If the car’s initial position is 20 ft, use the formula to find the car’s position at t = 60
sec.

d. At what time does the equation for v(t) predict the car’s displacement will be 3000 ft?
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7. The following chart shows a runner’s speed at various times during a race. Using a
Riemann sum approximation, determine the length of the race.

Speed (m/s) 0 3.896 4.016 4.406 4.140
Time (s) 0 5.13 9.96 13.62 19.32

8. A six-lane swimming pool is 75 feet long by 30 feet wide. Its depth is measured at varying
distances shown in the table below.

Distance (ft) 0 6 7 9 10 11 13 23 25
Depth (ft) 3.5 3.5 4 6 7 9 10 14 12

Using a right Riemann sum approximation, what is the volume of the pool?

9. Green Lake has an average depth of 25 feet. The measurements were taken 20 feet apart.
The values represent the width of the lake at that point. Use a Trapezoidal approximation
to estimate the total volume of Green Lake.

065 710 83 74 64 40 41 40
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Solutions to Chapter 5 AP Problems

1. Use the values of f(x), a continuous function, given in the table below to find a trapezoidal

approximation of

∫ 9

0

f(x) dx with 3 equal subdivisions.

x 0 1 2 3 4 5 6 7 8 9
f(x) 4 6 7 8 7 5 4 6 7 10

A. 39

B. 48

C. 57

D. 66

E. 78

C [THIS QUESTION CORRESPONDS WITH SECTION 5.5]

2. In the figure below, the area of region A is 2 and the area of region B is 11. Find
∫ 3

0

(f(x)− 2) dx.

1 32A
x

y

B

A. −3

B. 3

C. 7

D. 11

E. 15

B [THIS QUESTION CORRESPONDS WITH SECTION 5.2]
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3. If a particle is moving in a straight line with a velocity of v(t) = 2t − 3 ft/sec and its
position at t = 2 sec is −10 ft, find its position at t = 5 sec.

A. −22 ft

B. 2 ft

C. 10 ft

D. 12 ft

E. 22 ft

B [THIS QUESTION CORRESPONDS WITH SECTION 5.5]

4. If f(x) =

∫ x2

0

√
1 + t3 dt, then f ′(

√
2) =?

A.
√
3

B. 3

C. 2
√
14

D. 6
√
2

E. 12

D [THIS QUESTION CORRESPONDS WITH SECTION 5.4]

5.

∫

2x2(sec(x3))2 dx =?

A. −2

3
tan(x3) + C

B. 2 tan(x3) + C

C. −2 tan(x3) + C

D.
2

3
tan(x3) + C

E. 6 tan(x3) + C

D [THIS QUESTION CORRESPONDS WITH SECTION 5.6]
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6. A car is traveling on a straight road. The velocity of the car is recorded in the table
below in 20 second intervals for 0 ≤ t ≤ 120 seconds.

t (sec) 0 20 40 60 80 100 120
v(t) (ft/sec) 45 58 65 72 68 63 48

a. Using correct units, explain the meaning of

∫ 120

0

v(t) dt in terms of this car.

∫ 120

0

v(t) dt gives the car’s displacement in feet from t = 0 to t = 120 seconds.

b. Use a midpoint Riemann Sum with 3 equal subintervals to approximate

∫ 120

0

v(t) dt.

7720 ft

c. The car’s velocity can be estimated by v(t) =
−7

1000
t2 +

9

10
t + 42 for 0 ≤ t ≤ 120 sec.

If the car’s initial position is 20 ft, use the formula to find the car’s position at t = 60
sec.

7508 ft

d. At what time does the equation for v(t) predict the car’s displacement will be 3000 ft?

t = 50.958 sec
[THIS QUESTION CORRESPONDS WITH SECTION 5.1]
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7. The following chart shows a runner’s speed at various times during a race. Using a
Riemann sum approximation, determine the length of the race.

Speed (m/s) 0 3.896 4.016 4.406 4.140
Time (s) 0 5.13 9.96 13.62 19.32

199.980m (should be a 200m race)
[THIS QUESTION CORRESPONDS WITH SECTION 5.1]

8. A six-lane swimming pool is 75 feet long by 30 feet wide. Its depth is measured at varying
distances shown in the table below.

Distance (ft) 0 6 7 9 10 11 13 23 25
Depth (ft) 3.5 3.5 4 6 7 9 10 14 12

Using a right Riemann sum approximation, what is the volume of the pool?

7110 cubic feet
[THIS QUESTION CORRESPONDS WITH SECTION 5.1]

9. Green Lake has an average depth of 25 feet. The measurements were taken 20 feet apart.
The values represent the width of the lake at that point. Use a Trapezoidal approximation
to estimate the total volume of Green Lake.

065 710 83 74 64 40 41 40

25

(
20

2
[0 + 2(65 + 71 + 83 + 74 + 64 + 40 + 41 + 40) + 0]

)

= 239, 000 cubic feet

[THIS QUESTION CORRESPONDS WITH SECTION 5.5]
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Ray Cannon’s Chapter 6 Overview

Just as Chapter 4 showed some applications of the derivative, Chapter 6 gives some
applications of the definite integral. The AP course description acknowledges that not
all possible applications can be covered in any one course, but this text does cover all
the applications listed as providing a common foundation.

Section 6.1 revisits the motivating idea in Section 5.1 to talk about the area between
two curves, and shows how to integrate along either axis. Section 6.2 first shows how to
find the volume of a solid with known cross-sections, mean (average) value of a function
and density. (Flow rate and center of mass are not tested on either the AB or BC exams.)
As examples of other applications, this section presents total mass as the integral of a
density function and volume of a flow as an integral of the velocity of the flow. Both of
these applications are developed as suggested by the AP course description, i.e. “setting
up an approximating Riemann sum and representing its limit as a definite integral.”
Section 6.3 deals with volumes of revolution, which is just a special case of known cross-
sections.

Section 6.4 continues in the same manner, developing the “shell method.” The “shell
method” is not tested on either the AB or BC exam. Section 6.5 uses the application of
work, which used to be a required application but is no longer. Again, the application is
developed by using approximating Riemann sums.
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6. Applications of the Integral

6.1. Area Between Two Curves.

Class Time AB 2 periods; BC 1 period. Essential.

Key Point

• Area between two curves: If f(x) ≥ g(x) on [a, b], then the area between the

graphs over [a, b] is

∫ b

a

(f(x)− g(x)) dx.

Lecture Material
Suppose f(x) ≥ g(x) for all x ∈ [a, b]. Explain that the area of the region between

y = f(x) and y = g(x) from x = a to x = b is represented by

∫ b

a

f(x) dx−
∫ b

a

g(x) dx =
∫ b

a

(f(x)− g(x)) dx. Do Example 1 and Exercise 4 in class.

If g2(y) ≥ g1(y), then the area between the graphs of these two functions is

∫ b

a

(g2(y)−
g1(y)) dy. Work Exercise 33.

Discussion Topics/Class Activities
Have students work Exercise 3 at their desks.

Suggested Problems
Exercises 5, 6, 13, 17, 19, 31, 35, 39, 43, 45, 47, 53, 55
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Worksheet 6.1.
Area Between Two Curves

1. Let f(x) = 8x− 10 and g(x) = x2 − 4x+ 10.

a. Find the points of intersection of the graphs and draw the region bounded by these
two functions.

2 4 6 8 10 12
x

y

b. Compute the area of this region.

2. Find the area of the region bounded by x = y2 + 4y − 22 and x = 3y + 8.

-20 -10 10 20

-6

-4

-2

2

4

y
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3. Sketch the region enclosed by the curves x = sin y and x =
2

π
y, and find its area.

-1 -0.5 0.5 1 x

-

Π

����

2

-

Π

����

4

Π

����

4

Π

����

2

y

4. Sketch the region enclosed by y = sin x, y = csc x, x =
π

4
, and x =

3π

4
and find its area.

Π

����

4
Π

����

2
3 Π
��������

4

x
0.25
0.5
0.75

1
1.25
1.5
1.75

2
y

5. Sketch the region whose area is represented by

∫ 1
√

2

−1
√

2

(
√
1− x2 − |x|)
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and compute its area using the formula for the area of a sector subtended by angle θ

with radius r; A =
r2θ

2
.

-

1
����������!!!!2

1
����������!!!!2

x

1

y
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Solutions to Worksheet 6.1

1. Let f(x) = 8x− 10 and g(x) = x2 − 4x+ 10.

a. Find the points of intersection of the graphs and draw the region bounded by these
two functions.

2 4 6 8 10

10

20

30

40

50

60

70

2 4 6 8 10

10

20

30

40

50

60

70

b. Compute the area of this region.

Area =

∫ 10

2

((8x− 10)− (x2 − 4x+ 10)) dx =
256

3

2. Find the area of the region bounded by x = y2 + 4y − 22 and x = 3y + 8.

-20 -10 10 20

-6

-4

-2

2

4

y

Area =

∫ 5

−6

((3y + 8)− (y2 + 4y − 22)) dy =
1331

6
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3. Sketch the region enclosed by the curves x = sin y and x =
2

π
y and find its area.

-1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

-1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

Area =

∫ π/2

−π/2

| sin y − 2
π
y| dy = 2

∫ π/2

0

(sin y − 2
π
y) dy = 2− π

2

4. Sketch the region enclosed by y = sin x, y = csc x, x =
π

4
, and x =

3π

4
and find its area.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

Area =

∫ 3π/4

π/4

(csc x− sin x) dx ≈ 0.3485
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5. Sketch the region whose area is represented by
∫ 1

√

2

−1
√

2

(
√
1− x2 − |x|) dx

and compute its area using the formula for the area of a sector subtended by angle θ

with radius r; A =
r2θ

2
.

Since the region is the portion of the disk x2 + y2 ≤ 1 subtended by a central angle of
measure π/2, Area = π/4.

-0.6 -0.4 -0.2 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1

-0.6 -0.4 -0.2 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1
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6.2. Setting Up Integrals: Volume, Density, Average Value.

Class Time AB 3 periods; BC 2 periods.

Fluid flow is not tested on the AP Calculus exams and may be omitted.

Key Points

• The volume V of a solid body is equal to the integral of the area of the horizontal

cross sections A(y), that is, V =

∫ b

a

A(y) dy.

• Average or mean value of a function on an interval:

M =
1

b− a

∫ b

a

f(x) dx.

• Mean Value Theorem for Integrals: If f(x) is continuous on [a, b] with average
value M , then f(c) = M for some c ∈ [a, b].

Lecture Material
Using the slide provided, explain the basic idea behind finding the volume of a solid object
by partitioning it into N slices. Work Example 1 in the text, which uses horizontal cross
sections. We can also use use vertical cross sections. Work Example 3 in the text.

Suppose f(x) is a continuous function on [a, b]. If we partition [a, b] into {xi}, i =

0, . . . N then we can interpret RN =
b− a

N
(f(x1) + f(x2) + · · · + f(xN)), as an average

value. Dividing by b− a gives

1

b− a
RN =

f(x1) + f(x2) · · ·+ f(xN)

N

If we take N to infinity, we can define this as the average of f(x) on [a, b]. Thus the

average value of f on [a, b] is
1

b− a

∫ b

a

f(x) dx. It is also helpful to draw pictures like

Figures 13 and 16 in the text. Work Example 8 in the text. Since f is continuous, it
takes on its average at some value c ∈ [a, b]. Thus we have the Mean Value Theorem for
Integrals: If f(x) is continuous on [a, b], then there exists a value c ∈ [a, b] such that

f(c) =
1

b− a

∫ b

a

f(x) dx

Given a density function (mass per unit length, population per square mile, mass per
cubic volume and the like), the amount is found by integrating the density function
multiplied by the length, area or volume. Work Examples 4 and 5.
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Discussion Topics/Class Activities
Students could work Exercise 46 at their desks or in groups using their graphing calcu-
lators.

Suggested Problems (2–3 assignments)
Exercises 1, 5, 8, 9, 11, 13, 24 (Volume); 25, 27, 29, 31, 33 (Density); 39, 45, 49, 51, 57,
58, 59 (Average Value)
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Worksheet 6.2.
Setting up Integrals: Volume, Density, Average Value

1. Calculate the volume of the ramp in the figure by integrating the area of the cross sections

a. perpendicular to the x-axis (rectangles),

b. perpendicular to the y-axis (triangles),

c. perpendicular to the z-axis.

4

2

6

x

y

z

2. Find the total mass of a 4-m rod whose linear density function is ρ(x) = 1 + cos(
π

2
x)

kg/m.
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3. Odzala National Park in the Republic of Congo has a high density of gorillas. Suppose
that the radial density function is ρ(r) = 10(1+ r)−2 gorillas per square kilometer, where
r is the distance from a large grassy clearing with a source of food and water. Calculate
the number of gorillas within a 5-km radius of the clearing.

4. What is the average area of the circles whose radii vary from 0 to 1?

5. Let M be the average value of f(x) = 2x2 on [0, 2]. Find a value c such that f(c) = M .
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Solutions to Worksheet 6.2

1. Calculate the volume of the ramp in the figure in three was by integrating the area of
the cross sections

a. Perpendicular to the x-axis (rectangles),

Cross sections perpendicular to the x-axis are rectangles of width 4 and height 2− 1

3
x.

The volume of the ramp is then
∫ 6

0

4

(

−1

3
x+ 2

)

dx =

(

−2

3
x2 + 8x

)∣
∣
∣
∣

6

0

= 24

b. Perpendicular to the y-axis (triangles),
Cross sections perpendicular to the y-axis are right triangles with legs of length 2 and

6. The volume of the ramp is then
∫ 4

0

(
1

2
· 2 · 6

)

dy = (6y)|40 = 24

c. Perpendicular to the z-axis.
Cross sections perpendicular to the z-axis are rectangles of length 6− 3z and width 4.

The volume of the ramp is then
∫ 2

0

4 (−3(z − 2)) dz =
(
−6z2 + 24z

)∣
∣2

0
= 24

4

2

6

x

y

z

2. Find the total mass of a 4-m rod whose linear density function is ρ(x) = 1 + cos(
π

2
x)

kg/m.
The total mass of the rod is

∫ 4

0

ρ(x) dx =

∫ 4

0

(

1 + cos
πx

2

)

dx =

(

x+
2 sin πx

2

π

)∣
∣
∣
∣

4

0

= 4 kg
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3. Odzala National Park in the Republic of Congo has a high density of gorillas. Suppose
that the radial density function is ρ(r) = 10(1+ r)−2 gorillas per square kilometer, where
r is the distance from a large grassy clearing with a source of food and water. Calculate
the number of gorillas within a 5-km radius of the clearing.

The number of gorillas within a 5-km radius of the clearing is

2π

∫ 5

0

r · ρ(r) dr =

∫ 5

0

104πr

(1 + r2)2

= − 52π

1 + r2

∣
∣
∣
∣

5

0

= 50π ≈ 157

4. What is the average area of the circles whose radii vary from 0 to 1?
The average area is

1

1− 0

∫ 1

0

πr2 dr =
π

3
r3
∣
∣
∣

1

0
=

π

3

5. Let M be the average value of f(x) = 2x2 on [0, 2]. Find a value c such that f(c) = M .

M =
1

2− 0

∫ 2

0

2x2 dx =
2

2

∫ 2

0

x2 dx =
1

3
x3

∣
∣
∣
∣

2

0

=
8

3

Then M = f(c) = 2c2 =
8

3
implies c = ± 4√

3
.
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6.3. Volumes of Revolution.

Class Time AB 3 periods; BC 2–3 periods. Essential.

Key Points

• Volumes of revolution
(i) Disk method: If we rotate the region under the graph of f(x) about the

x-axis for a ≤ x ≤ b, we obtain a solid whose volume V is

V = π

∫ b

a

f(x)2 dx

(ii) Washer method: If f(x) ≥ g(x) for a ≤ x ≤ b, then the volume V of the
solid obtained by rotating the region between f and g about the x-axis is

V = π

∫ b

a

(f(x)2 − g(x)2) dx

• These formulas may be adapted for regions revolved around the y-axis
(i) Disk method: If we rotate the region under the graph of x = f(y) about the

y-axis for c ≤ y ≤ d, we obtain a solid whose volume V is

V = π

∫ d

c

(f(y))2 dy

(ii) Washer method: If f(y) ≥ g(y) for c ≤ y ≤ d, then the volume V of the
solid obtained by rotating the region between f and g about the y-axis is

V = π

∫ d

c

(f(y)2 − g(y)2) dy

• When the region is rotated around a horizontal or vertical line that is not an axis,
these formulas need to be modified
(i) Disk method: If we rotate the region under the graph of y = f(x) about the

line y = k for a ≤ x ≤ b, we obtain a solid whose volume V is

V = π

∫ b

a

(f(x)− k)2 dx

(ii) Washer method: If f(x) ≥ g(x) ≥ k for a ≤ x ≤ b, then the volume V of the
solid obtained by rotating the region between f and g about the line y = k
is

V = π

∫ b

a

((f(x)− k)2 − (g(x)− k)2) dx
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Notice that the general form of each of the formulas above is

∫ b

a

π(outer radius)2 −
π(inner radius)2 dx where the inner radius may be zero.

Lecture Material
Using the slide provided, explain the basic idea behind solids formed by revolving a
continuous function about the x-axis over [a, b]. The cross section of this solid will be
a circle with a radius of f(x) and area πf(x)2. Thus the volume of the solid will be
∫ b

a

πf(x)2 dx. This is called the disk method. Illustrate by working Exercises 6 and 12.

Suppose f and g are two nonnegative continuous functions such that f(x) ≥ g(x) on
[a, b]. If we rotate the region between f and g on [a, b], then our solid of revolution has
a “hole” in it. So the cross section obtained will have area πf(x)2 − πg(x)2. Thus the

volume of this solid will be π

∫ b

a

(f(x)2 − g(x)2) dx. This is called the washer method.

Illustrate by working Exercises 16 and 18.
There are variations of these two methods. You can rotate about a horizontal line

other than the x-axis, and you can rotate about vertical lines. Work Exercises 49 and
50.

Discussion Topics/Class Activities
Students could work Exercise 59 at their desks or in groups.

Suggested Problems
Exercises 3, 5, 11, 21, 23 (disk); 15, 19, 23, 27, 29, 31, 43, 51 (washer); 53, 54, 56, 59
(harder)
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Worksheet 6.3.
Volumes of Revolution

1. Find the volume of the solid obtained by rotating the region under the graph of the
function about the x-axis over the given interval.

a. f(x) =
1

x2
, [1, 4]

x

y

b. f(x) =
√
cosx sin x

x

y
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2. Sketch the region enclosed by the two curves and find the volume of the solid obtained
by rotating the region about the x-axis.

a. y = x2 and y = 2x+ 3

-2 -1 1 2 3

2

4

6

8

10

b. y = sec x, y = csc x, y = 0, x = 0, and x =
π

2

Π

����

4
Π

����

2

x

1

2
y
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3. Find the volume of the solid obtained by rotating the region enclosed by the graph about
the given line.

a. y =
1

x
, y =

5

2
− x, about y = −1

0.5 1 1.5 2 x

-1

-0.5

0.5

1

1.5

2
y

0.5 1 1.5 2 x

-1

-0.5

0.5

1

1.5

2
y

b. y = 16− x, y = 3x+ 12, x = 0 about x = 2

0.5 1 1.5 2 2.5 3 3.5 4
x

2

4

6

8

10

12

14

16
y

0.5 1 1.5 2 2.5 3 3.5 4
x

2

4

6

8

10

12

14

16
y
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Solutions to Worksheet 6.3

1. Find the volume of the solid obtained by rotating the region under the graph of the
function about the x-axis over the given interval.

a. f(x) =
1

x2
, [1, 4]

x

y

The volume of the solid of revolution is

π

∫ 4

1

(x−2)2 dx = π

∫ 4

1

x−4 dx = π

(

−1

3
x−3

)∣
∣
∣
∣

4

1

=
21π

64

b. f(x) =
√
cosx sin x

x

y
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The volume of the solid of revolution is

π

∫ π/2

0

(
√
cosx sin x)2 dx = π

∫ π/2

0

(cosx sin x) dx

= π

∫ 1

0

u du = π

(
1

2
u2

)∣
∣
∣
∣

1

0

=
π

2

2. Sketch the region enclosed by the two curves and find the volume of the solid obtained
by rotating the region about the x-axis.

a. y = x2 and y = 2x+ 3

-2 -1 1 2 3

2

4

6

8

10

-2 -1 1 2 3

2

4

6

8

10

(1) Setting x2 = 2x+ 3 yields

0 = x2 − 2x− 3 = (x− 3)(x+ 1).

The two curves therefore intersect at x = −1 and x = 3. The region enclosed by
the two curves is shown in the figure.

(2) When the region is rotated about the x-axis, each cross section is a washer with
outer radius R = 2x+ 3 and inner radius r = x2.

(3) The volume of the solid of revolution is

π

∫ 3

−1

(
(2x+ 3)2 − (x2)2

)
dx = π

∫ 3

−1

(4x2 + 12x+ 9− x4) dx

= π

(
4

3
x3 + 6x2 + 9x− 1

5
x5

)∣
∣
∣
∣

3

−1

=
1088π

15
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b. y = sec x, y = csc x, y = 0, x = 0, and x =
π

2

Π

����

4
Π

����

2

1

�!!!!2

Π

����

4
Π

����

2

1

�!!!!2

(1) The region in question is shown in the figure.
(2) When the region is rotated about the x-axis, cross sections for x ∈ [0, π/4] are

circular disks with radius R = sec x, whereas cross sections for x ∈ [π/4, π/2] are
circular disks with radius R = csc x.

(3) The volume of the solid of revolution is

∫ π/4

0

π sec2 x dx+

∫ π/2

π/4

π csc2 x dx = π (tan x) |π/40 + π (− cot x) |π/2π/4

= π (1) + π (1)

= 2π

3. Find the volume of the solid obtained by rotating the region enclosed by the graphs about
the given line.

a. y =
1

x
, y =

5

2
− x, about y = −1
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0.5 1 1.5 2 x

-1

-0.5

0.5

1

1.5

2
y

0.5 1 1.5 2 x

-1

-0.5

0.5

1

1.5

2
y

The region enclosed by the two curves is shown in the figure. Rotating the region about

the line y = −1 produces a solid whose cross sections have outer radius R =
1

x
− (−1) =

1

x
+ 1 and inner radius r =

5

2
− x− (−1) =

7

2
− x. Setting

1

x
=

5

2
− x and solving for x,

the curves y =
1

x
and y =

5

2
− x intersect at x =

1

2
and x = 2. The volume of the solid

of revolution is

π

∫ 2

1

2

((
1

x
+ 1

)2

−
(
7

2
− x

)2
)

dx = π

∫ 2

1

2

(
1

x2
+

2

x
− 41

4
+ 7x− x2

)

dx

= 2π

(

−1

x
+ 2 lnx− 41

4
x+

7

2
x2 − 1

3
x3

)∣
∣
∣
∣

2

1

2

= π(ln 16− 27

8
)

b. y = 16− x, y = 3x+ 12, x = 0 about x = 2.



290

0.5 1 1.5 2 2.5 3 3.5 4
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12

14

16
y

Rotating the region enclosed by y = 16− x, y = 3x+12 and the y-axis (see the figure
in Exercise 3 (a)) about x = 2 produces a solid with two different cross sections. For
each y ∈ [12, 15], the cross section is a washer with outer radius R = 2 and inner radius

r = 2− 1

3
(y− 12) = 6− 1

3
y; for each y ∈ [15, 16], the cross section is a washer with outer

radius R = 2 and inner radius r = 2 − (16 − y) = y − 14. The volume of the solid of
revolution is

π

∫ 15

12

(

(2)2 −
(

6− 1

3
y

)2
)

dy + π

∫ 16

15

(
(2)2 − (y − 14)2

)
dy

= π

∫ 15

12

(

−1

9
y2 + 4y − 32

)

dy + π

∫ 16

15

(−y2 + 28y − 192) dy

= π

(

− 1

27
y3 + 2y2 − 32y

)∣
∣
∣
∣

15

12

+ π

(

−1

3
y3 + 14y2 − 192y

)∣
∣
∣
∣

16

15

=
20

3
π
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6.4. The Method of Cylindrical Shells.

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Points

• If f(x) ≥ 0, then the volume V of the solid obtained by rotating the region
underneath the graph of y = f(x) over [a, b] about the y-axis is

V = 2π

∫ b

a

xf(x) dx

If g(y) ≥ 0, then the volume V of the solid obtained by rotating the region to the
left of the graph of x = g(y) over [a, b] about the x-axis is

V = 2π

∫ b

a

yg(y) dy

• If we revolve f(x) from [a, b] about x = c where c 6= 0, then the volume of the
resulting solid is

V = 2π

∫ b

a

(x− c)f(x) dx

Lecture Material
Using the slide provided, explain the basic idea behind the Method of Cylindrical Shells.
Cylindrical shells are used to find the volume of a solid of revolution. We want the
volume of a cylindrical shell with height h, outer radius R, and inner radius r. This is
πR2h− πr2h = πh(R+ r)(∆r), where ∆r = R− r. If the shell is very thin, then we can
replace R + r with 2r. So the volume of the cylindrical shell is approximately 2πhr∆r.

If we rotate a continuous function y = f(x) from x = a to x = b about the y-axis.
Then we can partition the resulting solid into N cylindrical shells each of whose volume
is 2πxif(xi)∆x, where xi is the right or left endpoint of the subintervals. Adding and

then taking the limit as N goes to infinity gives V = 2π

∫ b

a

xf(x) dx. Work Exercises 2

and 5.
You can use the Method of Cylindrical Shells to find the volume of a solid obtained by

rotating the region between two continuous functions of x about the y-axis or rotating
about another vertical line besides the y-axis, or rotating continuous functions of y about
the x-axis or other horizontal lines. Work Exercises 12, 18, 24, and 34, if time permits.

Discussion Topics/Class Activities
Students could work Exercise 52 at their desks or in groups.

Suggested Problems
Exercises 1, 4, 6 (graphical), 8, 9, 15, 18, 21, 26 (basic), 47, 48, 49, 50 (harder)
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Worksheet 6.4.

The Method of Cylindrical Shells

1. Sketch the solid obtained by rotating the region underneath the graph of the function
over the given interval about the y- axis and find its volume.

a. f(x) =
√
x, [0, 4]

-4 -3 -2 -1 1 2 3 4
x

2

y

-4 -3 -2 -1 1 2 3 4
x

2

y

b. f(x) =
√
x2 + 9, [0, 3]

-3 -2 -1 1 2

y

-3 -2 -1 1 2

y
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2. Use the Shell Method to compute the volume of the solid obtained by rotating the region
enclosed by y = 8− x3 and y = 8− 4x about the y-axis.

3. Sketch the solid obtained by rotating the region underneath the graph of f(x) = x3 over
[0, 1] about the vertical line x = −2.

-5 -4 -3 -2 -1 1
x

1

y

-5 -4 -3 -2 -1 1
x

1

y

4. Use the Shell Method to calculate the volume of the region found by rotating y = 4− x2

on [0, 2] about the y-axis.
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5. Use the Shell Method to find the volume of the solid found by rotating the region below
y = 6 and above y = x2 + 2 over [0, 2] about the vertical line x = −3.

-8 -6 -4 -2 2
x

1

2

3

4

5

6
y

-8 -6 -4 -2 2
x

1

2

3

4

5

6
y



295

Solutions to Worksheet 6.4

1. Sketch the solid obtained by rotating the region underneath the graph of the function
over the given interval about the y axis and find its volume.

a. f(x) =
√
x, [0, 4]

Each shell has radius x and height
√
x, so the volume of the solid is

2π

∫ 4

0

x
√
x dx = 2π

∫ 4

0

x3/2 dx = 2π

(
2

5
x5/2

)∣
∣
∣
∣

4

0

=
128

5
π

b. f(x) =
√
x2 + 9, [0, 3]

Each shell has radius x and height 1 + x2, so the volume of the solid is

2π

∫ 3

1

x(1 + x2) dx = 2π

∫ 3

1

(x+ x3) dx

= 2π

(
1

2
x2 +

1

4
x4

)∣
∣
∣
∣

3

1

= 48π
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2. Use the Shell Method to compute the volume of the solid obtained by rotating the region
enclosed by y = 8− x3 and y = 8− 4x about the y-axis.

Following is a sketch of the solid.

Notice that the solid is generated by rotating two vertical strips 8− 4x ≤ y ≤ 8− x3

and x3 + 8 ≤ y ≤ 8 + 4x for every 0 ≤ x ≤ 2. Thus each of the two shells has radius x
and height 4x− x3. The volume of the resulting solid is

4π

∫ 2

0

x(4x− x3) dx = 4π

∫ 2

0

(4x2 − x4) dx

= 4π

(
4

3
x3 − 1

5
x5

)∣
∣
∣
∣

2

0

=
256π

15

3. Sketch the solid obtained by rotating the region underneath the graph of f(x) = x3 over
[0, 1] about the vertical line x = −2.
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Each shell has radius x− (−2) = x+ 2 and height x3, so the volume of the solid is

2π

∫ 1

0

(2 + x)
(
x3
)
dx = 2π

∫ 1

0

(2x3 + x4) dx

= 2π

(
x4

2
+

x5

5

)∣
∣
∣
∣

1

0

=
7π

5

4. Use the Shell Method to calculate the volume of the region found by rotating y = 4− x2

on [0, 2] about the y-axis.

When the region in the figure is rotated about the x-axis, each shell has radius y and
height

√

4− y. The volume of the resulting solid is

2π

∫ 4

0

y
√

4− y dy

Let u = 4− y. Then du = −dy, y = 4− u, and

2π

∫ 4

0

y
√

4− y dy = −2π

∫ 0

4

(4− u)
√
u du

= 2π

∫ 4

0

(
4
√
u− u3/2

)
du

= 2π

(
8

3
u3/2 − 2

5
u5/2

)∣
∣
∣
∣

4

0

=
256π

15
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5. Use the Shell Method to find the volume of the solid found by rotating the region below
y = 6 and above y = x2 + 2 over [0, 2] about the vertical line x = −3.

Volume = 2π

∫ 2

0

x(x2 + 2) dx = 16π
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6.5. Work and Energy.

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Points

• The work performed when a constant force F is applied to an object through a
distance d is F × d.

• If the force is a continuous function of x, denoted F (x), the the work done in

moving an object along the x-axis from a to b when F is applied is

∫ b

a

F (x) dx.

• Hooke’s Law: A spring exerts a restoring force in the opposite direction of magni-
tude. That is, F (x) = −kx, where k is the spring constant measured in kilograms
per second squared.

• In some cases, the work is computed by dividing the object into N thin layers

each with a thickness of ∆y =
b− a

N
, where the object extends from a to b. We

approximate the work Wi performed on the ith layer as W (yi)∆y. Then total

work is W =

∫ n

a

W (y) dy.

Lecture Material
Using the slide provided, illustrate that work is force times distance. Work Exercise 2.

If the force can be represented as a continuous function, F (x), applied to an object
along the x-axis from a to b, then we must partition [a, b] into N subintervals of length

∆x =
b− a

N
and approximate the work done on each subinterval as F (xi)∆x, where xi

is the right endpoint of the subintervals. Then we add up subintervals and take the limit
as N goes to infinity. Hence the work W performed by F in moving an object along the

x-axis from a to b is W =

∫ b

a

F (x) dx.

An application is finding the work required to stretch or compress a spring. Hooke’s
Law states that a spring exerts a restoring force in the opposite direction of magnitude
F (x) = −kx, where k is the spring constant measured in units of kilograms per second
squared. Work Example 1 in the text.

Sometimes each layer of an object is moved through a different distance, such as
building a cement column of height h and a square base. We need to divide [0, h] into
N subintervals and approximate the work done on each layer using the formula of force
times distance. Then we sum the approximate work done on each layer up and take the

limit as N goes to infinity. Thus the work W performed is

∫ h

0

W (y) dy, where W(y)



300

is the work performed to raise a layer to height y. Work Example 2, Exercise 12, and
Exercise 20, if time permits.

Discussion Topics/Class Activities
Students could work Exercise 17 at their desks or in groups.

Suggested Problems
Exercises 1, 2, 3, 5 (basic), 13, 15, 19, 21, 23, 27, 29 (harder)
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Worksheet 6.5.
Work and Energy

1. Find the work in joules to compress a spring 4 cm past equilibrium, assuming that the
spring constant is k = 150 kg/s2

.

.

2. Calculate the work against gravity to build a cylindrical tower of height 20 ft and radius
10 ft, assuming that the brick has density 80 lb/ft3.

3. Calculate the work in joules required to pump all the water out of the conical tank
pictured.

5

10

Water exits here

4. How much work is done in lifting a 3-m chain over the side of a building, if the chain has
mass density 4 kg/m?
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Solutions to Worksheet 6.5

1. Find the work in joules to compress a spring 4 cm past equilibrium, assuming that the
spring constant is k = 150 kg/s2.

The work required to compress the spring 4 cm past equilibrium is
∫ −.04

0

150x dx = 75x2
∣
∣−.04

0
= 0.12 J

2. Calculate the work against gravity to build a cylindrical tower of height 20 ft and radius
10 ft, assuming that the brick has density 80 lb/ft3.

The area of the base is 100π ft2, so the volume of each small layer is 100π∆y ft3. The
weight of one layer is then 8000π∆y lb. Finally, the total work done against gravity to
build the tower is

∫ 20

0

8000πy dy = 1.6× 106π ft-lb.

3. Calculate the work in joules required to pump all the water out of the conical tank
pictured.

5

10

Water exits here

Place the origin at the vertex of the inverted cone, and let the positive y-axis point
upward. Consider a layer of water at a height of y meters. From similar triangles, the
area of the layer is

π
(y

2

)2

m2

so the volume is

π
(y

2

)2

∆y m3

Thus the weight of one layer is

9800π
(y

2

)2

∆y N
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The layer must be lifted 12− y meters, so the total work needed to empty the tank is
∫ 10

0

9800π
(y

2

)2

(12− y) dy = π(3.675× 106) J

≈ 1.155× 107 J

4. How much work is done in lifting a 3-m chain over the side of a building, if the chain has
mass density 4 kg/m?

Consider a segment of the chain of length ∆y located a distance yj meters from the
top of the building. The work needed to lift this segment of the chain to the top of the
building is approximately

Wj ≈ (4∆y)(9.8)yj J

Summing all segments of the chain and passing to the limit as ∆y → 0, it follows that
the total work is ∫ 3

0

4 · 9.8y dy = 19.6y2
∣
∣
3

0
= 176.4 J
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Chapter 6 AP Problems

For 2, 4, 5, 6 and 7, a calculator may be used. For 1 and 3, no calculator allowed.

1. Which of the following equations would give you the area shaded in the graph below?

x

1

y

−1

π

y = sin x

y = sin (2x)

p

2

A. A =

∫ π

0

[sin(2x)− sin x] dx

B. A =

∫ π

0

[sin x− sin(2x)] dx

C. A =

∫ π/3

0

sin x dx+

∫ π

π/3

sin(2x) dx

D. A =

∫ π/3

0

[sin(2x)− sin x] dx+

∫ π

π/3

[sin x− sin(2x)] dx

E. A =

∫ π/3

0

[sin x− sin(2x)] dx+

∫ π

π/3

[sin(2x)− sin x] dx

2. The velocity of an object in m/s is given by v(t) = 2t ln t. What is the average velocity
from t = 1 to t = 5 seconds?

A. 3.219 m/s

B. 4.024 m/s

C. 7.059 m/s

D. 16.094 m/s

E. 28.236 m/s
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3. The region between the curves y = x2 and y =
√
x in the first quadrant is the base of a

solid. For this solid, each cross section perpendicular to the y-axis is a rectangle whose
height (above the xy-plane) is half of its length (in the xy-plane). Which of the following
integrals gives the volume of this solid?

A. π

∫ 1

0

(
√
y − y2)2 −

(
1

2
(
√
y − y2)

)2

dy

B.
π

2

∫ 1

0

(
√
y − y2)2 dy

C.

∫ 1

0

(
√
y − y2)2 −

(
1

2
(
√
y − y2)

)2

dy

D.

∫ 1

0

(y − y4) dy

E.
1

2

∫ 1

0

(
√
y − y2)2 dy

4. The area bounded by the curve y =
1

2
x2, the x-axis, and the lines x = k and x = 2,

where 0 < k < 2, is rotated about the x-axis. The volume of the solid formed is 5. Find
the value of k.

A. 0.002

B. 0.701

C. 0.967

D. 1.565

E. 3.248
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5. Find the volume of the solid formed when the area in the first quadrant between f(x) =
sin(2x) and g(x) = x is rotated about the line y = 2.

A. 0.057

B. 0.179

C. 0.576

D. 1.809

E. 3.479

6. Let R be the region in the first quadrant shown in the figure below. Region R is bounded
by f(x) = tan(x/2) and g(x) = sin x. (calculator required)

g(x)

f (x)

R

1

y

x
1 2

a. Find the area of R.

b. Find the volume of the solid generated when R is revolved about the x-axis.

c. Find the volume of the solid generated when R is revolved about the line x = −2.

d. The region R is the base of a solid. For this solid, each cross section perpendicular to
the x-axis is a semicircle. Find the volume of this solid.
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7. The function S(t) given below can be used to estimate the number of hours of daylight
in Liberty Hill, TX for a given day of the year for 0 ≤ t ≤ 365 (t is in days and t = 0 is
midnight on January 1). (calculator required)

S(t) = −1.95 cos
( π

189
(x+ 24)

)

+ 12.15 hours/day

Use the given formula to find the following:

a. What is the total number of daylight hours from the 100th day to the 200th day?

b. Is the length of the day increasing or decreasing on the 100th day? Explain.

c. What is the average number of hours of daylight from day 30 to day 250?

d. On what day is the Summer Solstice (longest day of the year)? Explain.
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Solutions to Chapter 6 AP Problems

1. Which of the following equations would give you the area shaded in the graph below?

x

1

y

−1

π

y = sin x

y = sin (2x)

p

2

A. A =

∫ π

0

[sin(2x)− sin x] dx

B. A =

∫ π

0

[sin x− sin(2x)] dx

C. A =

∫ π/3

0

sin x dx+

∫ π

π/3

sin(2x) dx

D. A =

∫ π/3

0

[sin(2x)− sin x] dx+

∫ π

π/3

[sin x− sin(2x)] dx

E. A =

∫ π/3

0

[sin x− sin(2x)] dx+

∫ π

π/3

[sin(2x)− sin x] dx

D [THIS PROBLEM CORRESPONDS WITH SECTION 6.1]

2. The velocity of an object in m/s is given by v(t) = 2t ln t. What is the average velocity
from t = 1 to t = 5 seconds?

A. 3.219 m/s

B. 4.024 m/s

C. 7.059 m/s

D. 16.094 m/s

E. 28.236 m/s

C [THIS PROBLEM CORRESPONDS WITH SECTION 6.2]
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3. The region between the curves y = x2 and y =
√
x in the first quadrant is the base of a

solid. For this solid, each cross section perpendicular to the y-axis is a rectangle whose
height (above the xy-plane) is half of its length (in the xy-plane). Which of the following
integrals gives the volume of this solid?

A. π

∫ 1

0

(
√
y − y2)2 −

(
1

2
(
√
y − y2)

)2

dy

B.
π

2

∫ 1

0

(
√
y − y2)2 dy

C.

∫ 1

0

(
√
y − y2)2 −

(
1

2
(
√
y − y2)

)2

dy

D.

∫ 1

0

(y − y4) dy

E.
1

2

∫ 1

0

(
√
y − y2)2 dy

E [THIS PROBLEM CORRESPONDS WITH SECTION 6.2]

4. The area bounded by the curve y =
1

2
x2, the x-axis, and the lines x = k and x = 2,

where 0 < k < 2, is rotated about the x-axis. The volume of the solid formed is 5. Find
the value of k.

A. 0.002

B. 0.701

C. 0.967

D. 1.565

E. 3.248

B [THIS PROBLEM CORRESPONDS WITH SECTION 6.3]
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5. Find the volume of the solid formed when the area in the first quadrant between f(x) =
sin(2x) and g(x) = x is rotated about the line y = 2.

A. 0.057

B. 0.179

C. 0.576

D. 1.809

E. 3.479

D [THIS PROBLEM CORRESPONDS WITH SECTION 6.3]

6. Let R be the region in the first quadrant shown in the figure below. Region R is bounded
by f(x) = tan(x/2) and g(x) = sin x. (calculator required)

g(x)

f (x)

R

1

y

x
1 2

a. Find the area of R.

0.307
[THIS PROBLEM CORRESPONDS WITH SECTION 6.1]

b. Find the volume of the solid generated when R is revolved about the x-axis.

1.119
[THIS PROBLEM CORRESPONDS WITH SECTION 6.3]

c. Find the volume of the solid generated when R is revolved about the line x = −2.

5.470
[THIS PROBLEM CORRESPONDS WITH SECTION 6.3]
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d. The region R is the base of a solid. For this solid, each cross section perpendicular to
the x-axis is a semicircle. Find the volume of this solid.

0.029
[THIS PROBLEM CORRESPONDS WITH SECTION 6.2]

7. The function S(t) given below can be used to estimate the number of hours of daylight
in Liberty Hill, TX for a given day of the year for 0 ≤ t ≤ 365 (t is in days and t = 0 is
midnight on January 1). (calculator required)

S(t) = −1.95 cos
( π

189
(x+ 24)

)

+ 12.15 hours/day

Use the given formula to find the following:

a. What is the total number of daylight hours from the 100th day to the 200th day?

1382.954 hours
[THIS PROBLEM CORRESPONDS WITH SECTION 5.5]

b. Is the length of the day increasing or decreasing on the 100th day? Explain.

S ′(100) = .029. The length of the day is increasing on the 100th day because S ′(100)
is positive.
[THIS PROBLEM CORRESPONDS WITH SECTION 4.3]

c. What is the average number of hours of daylight from day 30 to day 250?

13.094 hours/day
[THIS PROBLEM CORRESPONDS WITH SECTION 6.2]

d. On what day is the Summer Solstice (longest day of the year)? Explain.

Local maximums are at t = 165 (because S ′(t) = 0 and changing from positive to
negative) and at t = 365 (increasing to right endpoint). We have

S(165) = 14.1 hours/day

S(365) = 10.233 hours/day

The Summer Solstice is at the absolute maximum which is the 165th day of the year.
[THIS PROBLEM CORRESPONDS WITH SECTION 4.2]
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Ray Cannon’s Chapter 7 Overview

The preponderance of material in Chapter 7 pertains only to the BC course description.
For example, Section 7.1, integration by parts, is not part of the AB course description,
but many AB teachers like to cover this material anyway; it is a very important topic in
the BC course description. AP students are not responsible for the reduction formulas
in Section 7.2, but should know the antiderivatives of tan(x) and sec(x), and how to

use substitution for integrals like

∫

sin3(x) cos(x) dx. Neither section 7.3 which treats a

special form of substitution, known as “trigonometric substitution” nor the hyperbolic
functions treated in Section 7.4 are part of either AP course description. Section 7.5
deals with the method of partial fractions in depth; BC students are only required to be
able to deal with non-repeated linear factors in the denominator.

The topic of Section 7.6 is improper integrals, which are also included in the BC
course description. BC students must be able to handle both unbounded domains, and
unbounded functions. They should also realize improper integrals are the limit of definite
integrals, and be careful in their treatment of the Fundamental Theorem of Calculus dur-
ing evaluations. Sec 7.7 is another section that shows applicability of the definite integral,
but the specific topic is optional. Finally, Section 7.8 discusses numerical approximations
to a definite integral. Along with the left- and right-side approximations, students should
be familiar with using trapezoids and midpoint rectangles to approximate the value of a
definite integral. The formulas for the Trapezoidal rule and the Midpoint rule need not
be memorized. Calculus students can always benefit from a discussion of error bounds,
but these formulas are not tested.
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7. Techniques of Integration

7.1. Integration by Parts.

Class Time AB 0 periods; BC 1 period. Essential.

BC only. This material is not tested on the AB exam.

Key Point

• Integration by Parts Formula:
∫

u(x)v′(x) dx = u(x)v(x)−
∫

u′(x)v(x) dx

Lecture Material
Remind students of the Product Rule,

(u(x)v(x))′ = u(x)v′(x) + u′(x)v(x)

Taking the antiderivative of both sides gives

u(x)v(x) =

∫

u(x)v′(x) dx+

∫

u′(x)v(x) dx

Rearranging gives the Integration by Parts Formula:
∫

u(x)v′(x) dx = u(x)v(x)−
∫

u′(x)v(x) dx

This formula also applies to definite integrals.
∫ b

a

u(x)v′(x) dx = u(x)v(x)|ba −
∫ b

a

u′(x)v(x) dx

Work examples

∫

x sin x dx,

∫

xex dx, and

∫ 3

1

ln x dx.

Sometimes we need to integrate more than once. Work

∫

x2 sin x dx and

∫

ex sin x.

If time permits, derive the reduction formula

∫

xnex = xnex − n

∫

xn−1ex dx. Work
∫ 1

0

x3ex dx. Reduction formulas are not tested on the AP exams.

Discussion Topics/Class Activities
Discuss Exercise 79.

Suggested Problems
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Exercises 7, 9, 11, 13, 15 (basic), 23, 25, 29 (harder), 49, 53 (basic), 59–64 (review), 71
(application)
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Worksheet 7.1.
Integration by Parts

1. Use Integration by Parts to evaluate

∫

xe−x dx.

2. Use the substitution u = x2 and then Integration by Parts to evaluate

∫

x3ex
2

dx.

3. Compute the definite integral

∫ 3

1

ln x dx.



317

4. Find the volume of the solid obtained by revolving y = cosx for 0 ≤ x ≤ π

2
about the

y-axis.
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Solutions to Worksheet 7.1

1. Use integration by parts to evaluate

∫

xe−x dx.

Let u = x and v′ = e−x. Then we have u = x, v = −e−x

u′ = 1 and v′ = e−x

Using Integration by Parts, we get
∫

x e−x dx = x(−e−x)−
∫

(1)(−e−x) dx

= −xe−x +

∫

e−x dx = −xe−x − e−x + C

= −e−x(x+ 1) + C

2. Use the substitution u = x2 then integration by parts to evaluate

∫

x3ex
2

dx.

Let w = x2. Then dw = 2x dx, and
∫

x3ex
2

dx =
1

2

∫

wewdw.

Using Integration by Parts, we let u = w and v′ = ew. Then we have
∫

wew dw = wew −
∫

(1)ew dw = wew − ew

Substituting back in terms of x, we get
∫

x3 ex
2

dx =
1

2

(

x2ex
2 − ex

2
)

+ C

3. Compute the definite integral

∫ 3

1

ln x dx.

Let u = ln x and v′ = 1. Then u′ = 1/x and v = x. Using Integration by Parts,
∫ 3

1

ln x dx = x ln x− x|31 = 3 ln 3− 3− ((1) ln 1− 1)

= 3 ln 3− 2

4. Find the volume of the solid obtained by revolving y = cosx for 0 ≤ x ≤ π

2
about the

y-axis.
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Use the Cylindrical Shells method, where the volume V is given by

V =

∫ b

a

(2πr)h dx = 2π

∫ π
2

0

x cosx dx

and the radius r = x and varies from 0 to
π

2
, and the height h = y = cosx.

Using Integration by Parts, with u = x and v′ = cosx, we get

V = 2π [x sin x+ cosx]
π
2

0 = 2π
[(π

2
+ 0
)

− (0 + 1)
]

= π(π − 2)
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7.2. Trigonometric Integrals.

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Points

• Odd power of sine:
∫

sin2k+1 x cosn x dx =

∫

(1− cos2 x)k cosn x sin x dx

Then use the substitution u = cosx, du = − sin xdx.
• Odd power of cosine:

∫

sinm x cos2k+1 x dx =

∫

sinm x(1− sin2 x)k cosx dx

Then use the substitution u = sin x, du = cosxdx.
• Sine and cosine both occur to an even power:

∫

sinm x cosn s dx =

∫

(1− cos2 x)m/2 cosn x dx if m > n

∫

sinm x cosn s dx =

∫

sinm x(1− sin2 x)n/2 dx if m < n

Then expand the right-hand side to obtain the integral of a sum of powers of
cosx or powers of sin x. These integrals can now be evaluated using the reduction
formulas:

∫

sinn x dx = −1

n
sinn−1 x cos x+

n− 1

n

∫

sinn−2 x dx

∫

cosn x dx = −1

n
cosn−1 x sin x+

n− 1

n

∫

cosn−2 x dx

Lecture Material
With the availability of computer algebra systems and powerful calculators, the topic of
trigonometric integrals is not as important as it once was. However the basic principle
behind the techniques is important. When the integrand involves an odd power of sine
or an odd power of cosine, you should use the Pythagorean Theorem sin2 x+ cos2 x = 1
to rewrite the integrand and then make the appropriate substitution. Work Examples 1
and 2.

Remind students of the trigonometric identities sin2 x =
1

2
(1 − cos(2x)) and cos2 x =

1

2
(1 + cos(2x)), both of which are derived from the identity cos(2x) = cos2 x − sin2 x.

Using the trigonometric identities, derive formulas for

∫

sin2 x dx and

∫

cos2 x dx. If
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time permits, prove one of the reduction formulas found in Box 1 (in the text) using
integration by parts. Now work Example 4.

Derive the formula

∫

tan x dx = ln | sec x| + C by using the substitution u = cosx.

Derive

∫

sec c dx = ln | sec x+ tan x|+ C by using the substitution u = sec x+ tanx. If

time permits, work Examples 6 and 7 and discuss integrals of the type

∫

sin(mx) cos(nx).

Discussion Topics/Class Activities
Discuss the Preliminary Questions with the students.

Suggested Problems
Exercises 1, 3, 5, 9, 11 (basic), 13, 31, 47, 57 (harder)
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Worksheet 7.2.
Trigonometric Integrals

1. Evaluate

∫

cos x sin5 x dx.

2. Evaluate

∫

cos2 θ sin2 θ dθ.
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3. Compute the definite integral

∫ π
2

0

cos3 x dx.

4. Evaluate the definite integral

∫ −π
4

−π
4

sec4 x dx.
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Solutions to Worksheet 7.2

1. Evaluate

∫

cos x sin5 x dx.

Write sin5 x = sin4 x sin x = (1− cos2 x)2 sin x. Then

∫

cosx sin5 x dx =

∫

cosx
(
1− cos2 x

)2
sin x dx

Now use the substitution u = cos x, du = − sin x dx:
∫

cosx sin5 x dx = −
∫

u
(
1− u2

)2
du = −

∫

u
(
1− 2u2 + u4

)
du

=

∫
(
−u+ 2u3 − u5

)
du = −1

2
u2 +

1

2
u4 − 1

6
u6 + C

= −1

2
cos2 x+

1

2
cos4 x− 1

6
cos6 x+ C

2. Evaluate

∫

cos2 θ sin2 θ dθ.

First use the identity cos2 θ = 1− sin2 θ to write
∫

cos2 θ sin2 θ dθ =

∫
(
1− sin2 θ

)
sin2 θ dθ =

∫

sin2 θ dθ −
∫

sin4 θ dθ

Using the reduction formula for sinm x,

∫

cos2 θ sin2 θ dθ =

∫

sin2 θ dθ −
[

−1

4
sin3 x cosx+

3

4

∫

sin2 x dx

]

=
1

4
sin3 x cosx+

1

4

∫

sin2 θ dθ

=
1

4
sin3 x cosx+

1

4

(

−1

2
sin x cosx+

1

2

∫

dx

)

=
1

4
sin3 x cosx− 1

8
sin x cosx+

1

8
x+ C

3. Compute the definite integral

∫ π
2

0

cos3 x dx.
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Use the reduction formula for cosm x:
∫ π/2

0

cos3 x dx =
1

3
cos2 x sin x

∣
∣
∣
∣

π/2

0

+
2

3

∫ π/2

0

cosx dx

=

[
1

3
(0)(1)− 1

3
(1)(0)

]

+
2

3
sin x

∣
∣
∣
∣

π/2

0

= 0 +
2

3
(1− 0) =

2

3

4. Evaluate the definite integral

∫ −π
4

−π
4

sec4 x dx.

First use the reduction formula for secm x to evaluate the indefinite integral:
∫

sec4 x dx =
1

3
tanx sec2 x+

2

3

∫

sec2 x dx

=
1

3
tanx sec2 x+

2

3
tan x+ C

Now compute the definite integral:
∫ π/4

−π/4

sec4 x dx =
1

3
tanx sec2 x+

2

3
tan x

∣
∣
∣
∣

π/4

−π/4

=

[
1

3
(1)
(√

2
)2

+
2

3
(1)

]

−
[
1

3
(−1)

(√
2
)2

+
2

3
(−1)

]

=
4

3
−
(

−4

3

)

=
8

3
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7.3. Trigonometric Substitution.

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Points

• If the integrand involves
√
a2 − x2, use the trigonometric substitution x = a sin θ.

Then
√
a2 − x2 = a cos θ.

• If the integrand involves
√
a2 + x2, use the trigonometric substitution x = a tan θ.

Then
√
a2 + x2 = a sec θ.

• If the integrand involves
√
x2 − a2, use the trigonometric substitution x = a sec θ.

Then
√
x2 − a2 = a tan θ.

Lecture Material
Using the slide provided, discuss the basic principle behind trigonometric substitution.
Emphasize that students should draw a right triangle and label the sides before tackling
the integration. There are three important cases, outlined in the Key Points. Work
Examples 1 and 2 and then Exercises 22 and 24.

Remind students of how to complete the square, then work either Example 5 or Exercise
36.

Discussion Topics/Class Activities
Discuss the preliminary questions with the students.

Suggested Problems
Exercises 1, 3 (basic), 13, 15, 21, 29 (harder), 35, 37, 39 (challenging), 43–51 odd, 53
(intuitive), 55, 56 (application)
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Worksheet 7.3.
Trigonometric Substitution

1. Use trigonometric substitution to evaluate

∫
dx√
x2 − 9

dx.

2. Evaluate the definite integral

∫ 1

0

dx

(16 + x2)2
.
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3. Evaluate

∫
dx√

12x− x2
by first completing the square and then using trigonometric sub-

stitution.

4. Indicate a method for evaluating the given integral, but don’t actually integrate.

a.

∫

sin3 x cos3 dx

b.

∫ √
4x2 − 1 dx

c.

∫

ln x dx
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Solutions to Worksheet 7.3

1. Use trigonometric substitution to evaluate

∫
dx√
x2 − 9

dx.

Let x = 3 sec θ. Then dx = 3 sec θ tan θ dθ, and x2 − 9 = 9 sec2 θ − 9 = 9(sec2 θ − 1) =
9 tan2 θ, gives

I =

∫
dx√
x2 − 9

=

∫
3 sec θ tan θ dθ

3 tan θ
=

∫

sec θ dθ

= ln | sec θ + tan θ|+ C

Since x = 3 sec θ, we construct a right triangle with sec θ =
x

3
. From this we see that

tan θ =
√
x2 − 9/3, so

I = ln

∣
∣
∣
∣

x

3
+

√
x2 − 9

3

∣
∣
∣
∣
+ C1 = ln

∣
∣
∣x+

√
x2 − 9

∣
∣
∣+ ln

(
1

3

)

+ C1

= ln
∣
∣
∣x+

√
x2 − 9

∣
∣
∣+ C

where C = ln(
1

3
) + C1.

2. Evaluate the definite integral

∫ 1

0

dx

(16 + x2)2
.

Let x = 4 tan θ. Then dx = 4 sec2 θ dθ, and 16+x2 = 16+16 tan2 θ = 16(1+ tan2 θ) =
16 sec2 θ. Then

I =

∫ 1

0

dx

(16 + x2)2
=

∫ 1

0

4 sec2 θ dθ

(16 sec2 θ)2
=

4

256

∫ 1

0

sec2 θ dθ

sec4 θ

=
1

64

∫ 1

0

cos2 θ dθ =
1

64

[
1

2
θ +

1

2
sin θ cos θ

]x=1

x=0

Since x = 4 tan θ, we see that sin θ = x/
√
x2 + 16 and cos θ = 4/

√
x2 + 16. Therefore,

I =
1

128

[

tan−1
(x

4

)

+

(
x√

x2 + 16

)(
4√

x2 + 16

)]1

0

=
1

128

[

tan−1
(x

4

)

+
4x√

x2 + 16

]1

0

=
1

128

[(

tan−1

(
1

4

)

+
4

17

)

− (0 + 0)

]

=
1

128

[

tan−1

(
1

4

)

+
4

17

]

≈ 0.003752
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3. Evaluate

∫
dx√

12x− x2
by first completing the square and then using trigonometric sub-

stitution.
First complete the square:

12x− x2 = −
(
x2 − 12x+ 36− 36

)
= −

(
x2 − 12x+ 36

)
+ 36

= 36− (x− 6)2

Now let u = x− 6, and du = dx. This gives

I =

∫
dx√

12x− x2
=

∫
dx

√

36− (x− 6)2
=

∫
du√

36− u2

Now let u = 6 sin θ. Then du = 6 cos θ dθ, and 36−u2 = 36− 36 sin2 θ = 36(1− sin2 θ) =
36 cos2 θ. So then

I =

∫
6 cos θ dθ

6 cos θ
=

∫

dθ = θ + C

Substituting back, we get

I = sin−1
(u

6

)

+ C = sin−1

(
x− 6

6

)

+ C

4. Indicate a method for evaluating the given integral, but don’t actually integrate.

a.

∫

sin3 x cos3 dx

Use the following trig method: Substitute sin2 x = 1− cos2 x and let u = cosx.

b.

∫ √
4x2 − 1 dx

Use trigonometric substitution, with x =
1

2
sec θ.

c.

∫

ln x dx

Use Integration by Parts, with u = ln x and v′ = 1.
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7.4. Integrals of Hyperbolic and Inverse Hyperbolic Functions.

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Points

• Integrals of hyperbolic functions:
∫

sinh xdx = cosh x+ C

∫

cosh xdx = sinh x+ C
∫

sech2xdx = tanh x+ C

∫

csch2dx = − cothx+ C
∫

sechx tanhxdx = −sechx+ C

∫

cschx coth xdx = −cschx + C

• Integrals involving inverse hyperbolic functions:
∫

dx√
x2 + 1

= sinh−1 x+ C

∫
dx√
x2 − 1

= cosh−1 x+ C (for x > 1)

∫
dx

1− x2
= tanh−1 x+ C (for |x| < 1)

∫
dx

1− x2
= coth−1 x+ C (for |x| < 1)

∫
dx

x
√
1− x2

= −sech−1x+ C (for 0 < x < 1)

∫
dx

|x|
√
1 + x2

= −csch−1x+ C (for x 6= 0)

Lecture Material
First point out that the differentiation formulas for the hyperbolic functions give inte-
gration formulas, and state them. Also point out the hyperbolic identities listed in this
section and that similar techniques to those involving the integrals of trigonometric func-
tions can be used for the hyperbolic trigonometric functions. Work Exercises 4 and 14
to demonstrate use of these formulas. Now work Exercise 18 to show that hyperbolic
substitutions can be made analogously to trigonometric substitution, and then state the
integral formulas for the inverse hyperbolic functions.
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Discussion Topics/Class Activities
With students, work Exercise 32 which shows that the answers obtained from either
trigonometric substitution or hyperbolic substitution are the same in a particular case.

Suggested Problems
Exercises 1–15 odd (hyperbolic integrals), 17–29 odd (hyperbolic substitution integrals)
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Worksheet 7.4.
Integrals of Hyperbolic and Inverse Hyperbolic Functions

Calculate the integrals.

1.

∫

sinh2 x cosh xdx

2.

∫

tanh(3t) sech(3t) dt

3.

∫
dx√
x2 − 4
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Solutions to Worksheet 7.4

Calculate the integrals.

1.

∫

sinh2 x cosh x dx
∫

sinh2 x cosh x dx =
1

3
sinh3 x

2.

∫

tanh(3t) sech(3t) dt
∫

tanh(3t) sech(3t) dt = −1

3
sech(3x) + C

3.

∫
dx√
x2 − 4∫

dx√
x2 − 4

=

∫
dx

2
√
(x
2
)2 − 1

= cosh−1(
x

2
)
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7.5. The Method of Partial Fractions.

Class Time AB 0 periods; BC 1–2 periods. Essential.

BC only. This material is not tested on the AB exam.

Key Points

• Suppose f(x) =
P (x)

Q(x)
such that the degree of P is less than the degree of P .

Then we use the Method of Partial Fractions.
• If Q(x) = (x− a1)(x− a2) · · · (x− an), where the roots aj are distinct, then there
exist constants A1, . . . , An such that

P (x)

Q(x)
=

A1

x− a1
+

A2

x− a2
· · ·+ An

x− an

• BC students may be tested on partial fractions involving non-repeated linear fac-
tors only. These expressions may appear in the context of the logistic differential
equation (Section 9.4). The rest of the material in this chapter is optional.

Lecture Material
Suppose P and Q are polynomials and the degree of P is less than the degree of Q. To

integrate

∫
P (x)

Q(x)
dx, we factor Q. We are concerned only with the case where Q is a

product of distinct linear factors. First, set

P (x)

Q(x)
=

P (x)

(x− a1)(x− a2) · · · (x− an)
=

A1

x− a1
+

A2

x− a2
· · ·+ An

x− an

Then solve for the constants A1, . . . , An. You can show students the trick of plugging in
the roots to simplify the algebra. Work Example 1, 2 (omit 4–6) or Exercise 12.

If P has a degree larger than or equal to Q, then divide Q into P using long division
(Example 3).

Discussion Topics/Class Activities
Discuss Exercise 49.

Suggested Problems
Exercises 2, 5, 7, 9, 11, 13, 15, 28
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Worksheet 7.5.
The Method of Partial Fractions

1. Use the Method of Partial Fractions to evaluate

∫
(3x+ 5)dx

x2 − 4x− 5
.

2. Use the Method of Partial Fractions to evaluate

∫
3dx

(x+ 1)(x2 + x)
.
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3. Use long division to write
x3 − 1

x2 − x
as the sum of a polynomial and a proper rational

fraction. Then calculate the integral.
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Solutions to Worksheet 7.5

1. Use the Method of Partial Fractions to evaluate

∫
(3x+ 5)dx

x2 − 4x− 5
.

The denominator factors as x2 − 4x − 5 = (x − 5)(x + 1), so the partial fraction
decomposition has the form

3x+ 5

x2 − 4x− 5
=

3x+ 5

(x− 5)(x+ 1)
=

A

x− 5
+

B

x+ 1

Clearing denominators gives

3x+ 5 = A(x+ 1) +B(x− 5)

Setting x = 5,

20 = A(6) + 0 ⇒ A =
20

6
=

10

3
Setting x = −1,

2 = 0 +B(−6) ⇒ B = −1

3
The result is

3x+ 5

x2 − 4x− 5
=

10
3

x− 5
+

−1
3

x+ 1
∫

(3x+ 5) dx

x2 − 4x− 5
=

10

3

∫
dx

x− 5
− 1

3

∫
dx

x+ 1

=
10

3
ln |x− 5| − 1

3
ln |x+ 1|+ C

2. Use the Method of Partial Fractions to evaluate

∫
3dx

(x+ 1)(x2 + x)
.

The partial fraction decomposition has the form

3

(x+ 1)(x2 + x)
=

3

(x+ 1)(x)(x+ 1)
=

3

x(x+ 1)2

=
A

x
+

B

x+ 1
+

C

(x+ 1)2

Clearing denominators gives

3 = A(x+ 1)2 +Bx(x+ 1) + Cx

Setting x = 0 gives
3 = A(1) + 0 + 0 ⇒ A = 3

Setting x = −1 gives
3 = 0 + 0 + C(−1) ⇒ C = −3
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Now plug in A = 3 and C = −3:

3 = 3(x+ 1)2 +Bx(x+ 1)− 3x

The constant B can be determined by plugging in for x any value other than 0 or −1.
Plugging in x = 1 gives

3 = 3(4) + B(1)(2)− 3 ⇒ B = −3

The result is
3

(x+ 1)(x2 + x)
=

3

x
+

−3

x+ 1
+

−3

(x+ 1)2
∫

3 dx

(x+ 1)(x2 + x)
= 3

∫
dx

x
− 3

∫
dx

x+ 1
− 3

∫
dx

(x+ 1)2

= 3 ln |x| − 3 ln |x+ 1|+ 3

x+ 1
+ C

3. Use long division to write
x3 − 1

x2 − x
as the sum of a polynomial and a proper rational

fraction. Then calculate the integral.
Long division gives

x3 − 1

x2 − x
= x+ 1 +

x− 1

x2 − x
= x+ 1 +

x− 1

x(x− 1)
= x+ 1 +

1

x

Therefore the integral is
∫

x3 − 1

x2 − x
dx =

∫

(x+ 1) dx+

∫
dx

x

=
1

2
x2 + x+ ln |x|+ C
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7.6. Improper Integrals.

Class Time AB 0 periods; BC 2 periods. Essential.

BC only. This material is not tested on the AB exam.

Key Points

•
∫ ∞

a

f(x) dx,

∫ a

−∞
f(x) dx,

∫ ∞

−∞
f(x) dx are called improper integrals.

•
∫ ∞

a

f(x) dx = lim
R→∞

∫ R

a

f(x) dx

•
∫ a

−∞
f(x) dx = lim

R→−∞

∫ a

R

f(x) dx

•
∫ ∞

−∞
f(x) dx = lim

R→−∞

∫ 0

R

f(x) dx+ lim
R→∞

∫ R

0

f(x) dx

If the limits exist, then the integrals are said to converge. Otherwise, they diverge.

•
∫ ∞

1

dx

xp
=







1

p− 1
, if p > 1

∞, if p ≤ 1

• If f(x) is continuous on [a, b) but discontinuous at x = b, then
∫ b

a

f(x) dx = lim
R→b−

∫ R

a

f(x) dx

• If f(x) is continuous on (a, b] but discontinuous at x = a, then
∫ b

a

f(x) dx = lim
R→a+

∫ b

R

f(x) dx

If the limits exists, then the integral is said to converge. Otherwise it diverges.

•
∫ 1

0

dx

xp
=







1

1− p
, if p < 1

∞, if p ≥ 1

• The Comparison Test for Improper Integrals (Theorem 3)
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Lecture Material
It is possible to integrate a continuous function over an infinite integral and get a finite
answer. An important example of this is the integral

∫ ∞

−∞
e−x2/2 dx

which is related to the standard normal distribution y = e−x2/2. We evaluate such
integrals using limits. The three cases are outlined in the Key Points. Work Examples 1
and 2 and Exercise 54.

State and prove Theorems 1 and 2. Work Exercises 6 and 8.
Another type of improper integral occurs when the integrand f(x) becomes infinite

at one or both endpoints of the interval of integration. For example,

∫ 2

1

dx

(x− 1)2
is

improper because lim
x→1+

1

(x− 1)2
= ∞. Again, we use limits to evaluate these integrals.

The two cases are listed in the Key Points. Work Exercises 22 and 23. State and prove
Theorem 2.

Sometimes it is not possible to evaluate an improper integral, but we can determine
whether it converges or not by comparing it to an integral that we can evaluate. We can
use the Comparison Test for Improper Integrals. Suppose f(x) ≥ g(x) > 0 for x ≥ a. If
∫ ∞

a

f(x) dx converges, then

∫ ∞

a

g(x) dx also converges and if

∫ ∞

a

g(x) dx diverges, then
∫ ∞

a

g(x) dx also diverges.

Work Exercises 58 and 70 and Example 9.

Discussion Topics/Class Activities
Discuss Example 3 (using L’Hôpital’s Rule). This is the only situation where AP students
may have to use L’Hôpital’s Rule. Of course, they may use it with regular limits.

Suggested Problems
Exercises 5, 9, 11, 13, 15, 21, 35 (basic), 39, 43 (harder), 45, 47 (doubly improper), 61,
63, 67 (comparison test)
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Worksheet 7.6.
Improper Integrals

Determine whether the improper integral converges, and if it does, evaluate it.

1.

∫ ∞

1

dx

x20/19

2.

∫

2

0∞
dt

t

3.

∫ 5

0

dx

x19/20

4.

∫ 3

1

dx√
3− x

5.

∫ 4

−2

dx

(x+ 2)1/3
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Solutions to Worksheet 7.6

Determine whether the improper integral converges and if it does, evaluate it.

1.

∫ ∞

1

dx

x20/19

First evaluate the integral over the finite interval [1, R] for R > 1:
∫ R

1

dx

x20/19
= −19x−1/19

∣
∣
R

1
=

−19

R1/19
− (−19) = 19− 19

R1/19

∫ ∞

1

dx

x20/19
= lim

R→∞

∫ R

1

dx

x20/19
= lim

R→∞

(

19− 19

R1/19

)

= 19− 0 = 19

2.

∫ ∞

20

dt

t
First evaluate the integral over the finite interval [20, R] for 20 < R:

∫ R

20

dt

t
= ln |t|

∣
∣R

20
= lnR− ln 20

∫ ∞

20

dt

t
= lim

R→∞

∫ R

20

dt

t
= lim

R→∞
(lnR− ln 20) = ∞

The integral does not converge.

3.

∫ 5

0

dx

x19/20

The function x−19/20 is infinite at the endpoint 0, so we first evaluate the integral on
the finite interval [R, 5] for 0 < R < 5:

∫ 5

R

dx

x19/20
= 20x1/20

∣
∣
5

R
= 20

(
51/20 −R1/20

)

∫ 5

0

dx

x19/20
= lim

R→0+

∫ 5

R

dx

x19/20
= lim

R→0+
20
(
51/20 −R1/20

)

= 20
(
51/20 − 0

)
= 20 · 51/20

4.

∫ 3

1

dx√
3− x
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The function f(x) = 1/
√
3− x is infinite at x = 3 and is left continuous at x = 3, so

we first evaluate the integral on the interval [1, R] for 1 < R < 3:
∫ R

1

dx√
3− x

= 2
√
3− x |R0

= −2
√
3−R + 2

√
2

lim
R→3

∫ R

1

dx√
3− x

= 0 + 2
√
2

Therefore the integral is equal to 2
√
2.

5.

∫ 4

−2

dx

(x+ 2)1/3

The function (x + 2)−1/3 is infinite at x = −2 and right-continuous at x = −2, so we
first evaluate the integral on the interval [R, 4] for −2 < R < 4:

∫ 4

R

dx

(x+ 2)1/3
=

3

2
(x+ 2)2/3

∣
∣
∣
∣

4

R

=
3

2

(
62/3 − (R + 2)2/3

)

∫ 4

−2

dx

(x+ 2)1/3
= lim

R→−2+

∫ 4

R

dx

(x+ 2)1/3
= lim

R→2+

3

2

(
62/3 − (R + 2)2/3

)

=
3

2

(
62/3 − 0

)
=

3 · 62/3
2
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7.7. Probability and Integration.

Class Time 0 periods; omit for AB and BC.

Key Points
None

Lecture Material
None

Discussion Topics/Class Activities
None

Suggested Problems
None
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7.8. Numerical Integration.

Class Time AB 2 periods; BC 1 period. Essential.

Key Points

• We consider two numerical approximations to

∫ b

a

f(x) dx: the Trapezoidal Rule

TN and the Midpoint Rule MN . For a positive integer N let ∆x =
b− a

N
and

yj = f(a+ j∆x), j = 0, 1, . . . , N . Then

TN =
1

2
∆x(y0 + 2y1 + 2y2 + · · ·+ 2yN−1 + yN)

and

MN = ∆x(f(c1) + f(c2) + · · ·+ f(cN)), where cj = a+ (j − 1

2
)∆x.

• For both the AB and BC exams students are expected to be able to approximate
a definite integral using a left sum, a right sum, a midpoint sum (see also Section
5.1) and the Trapezoidal Rule using a small number of intervals.

• The function values needed to use these formulas are often given in a table and
sometimes in a graph rather than an equation. Uneven subintervals are not
uncommon. For this reason, the formulas need not be memorized if the students
have a good graphical understanding of the process. For example, drawing the few
trapezoids required and finding the sum of their areas results in the Trapezoidal
Rule approximation.

• Simpson’s Rule and the Error Bound formulas for numerical integration are not
tested on either exam. Both of these may be omitted.

Lecture Material
We cannot always find a formula for the antiderivative of the integrand. In these in-
stances we need to integrate numerically. An important example is the standard normal

distribution f(x) =
1√
2π

e−
x2

2 used in statistical applications. The three numerical tech-

niques discussed in the text are the Trapezoidal Rule, the Midpoint Rule, and Simpson’s
Rule.

For the Trapezoidal Rule, we partition [a, b] into N intervals of width ∆x =
b− a

N
and

compute the area of each trapezoid with lengths f(xj−1) and f(xj) and height ∆x for all
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j = 1, . . . N . Then we add them up. This is equivalent to computing the average of the
left- and right-endpoint approximations. So the formula for a given N is

TN =
1

2
∆x(y0 + 2y1 + 2y2 + · · ·+ 2yN−1 + yN)

where yj = f(a+ j∆x), j = 0, 1, . . . , N . Work Example 1.
The Midpoint Rule is obtained by summing the areas of the rectangles with widths

∆x and heights f(cj), where cj is the midpoint of the interval, for j = 1 . . .N . This can
also be interpreted as the area of the “tangential” trapezoids, illustrated in Figure 5 in
the text. You can use the slide provided to discuss the Midpoint Rule. The formula is

MN = ∆x(f(c1) + f(c2) + · · ·+ f(cN))

where cj = a+ (j − 1

2
)∆x.

You may omit the discussion of the error bounds.

Discussion Topics/Class Activities
For both the Trapezoidal and Midpoint approximations, as well as left- and right-sums,

stress the graphical aspects. That is, show the rectangles or trapezoids for a small value
of n on the graph. Find the approximation without direct use of the formulas.

Demonstrate that the difference between the exact value of the integral and the ap-
proximation depends on whether the function is increasing or decreasing, or concave up
or down. For example, if the graph is concave down, the trapezoidal approximation
underestimates the value while the midpoint approximation overestimates the value.

Suggested Problems
Exercises 1, 7, 11, (numerical), 23, 27 (use trapezoids), 28 (use midpoints), also p. 381
#56 and p. 477 #1, 10
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Worksheet 7.8.
Numerical Integration

1. Find T4 for

∫ 4

0

√
x dx.

2. Find M8 for

∫ π
2

0

√
sin x dx.

3. State whether M10 underestimates or overestimates

∫ 4

1

ln x dx.
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Solutions to Worksheet 7.8

1. Find T4 for

∫ 4

0

√
x dx.

Let f(x) =
√
x. We divide [0, 4] into 4 subintervals of width

∆x =
4− 0

4
= 1

with endpoints 0, 1, 2, 3, 4, and midpoints 0.5, 1.5, 2.5, 3.5. With this data, we get:

T4 =
1

2
∆x
(√

0 + 2
√
1 + 2

√
2 + 2

√
3 +

√
4
)

≈ 5.14626

M4 = ∆x
(√

0.5 +
√
1.5 +

√
2.5 +

√
3.5
)

≈ 5.38382

2. Find M8 for

∫ π
2

0

√
sin x dx.

Let f(x) =
√
sin x. We divide [0, π/2] into 8 subintervals of width

∆x =
π
2
− 0

8
=

π

16

with endpoints

0,
π

16
,
2π

16
, · · · , 8π

16
=

π

2
,

and midpoints
π

32
,
3π

32
, · · · , 15π

32
.

With this data, we get:

T8 =
1

2

( π

16

)(√

sin(0) + 2
√

sin(π/16) + · · ·+
√

sin(8π/16)
)

≈ 1.18005

M8 =
π

16

(√

sin(π/32) +
√

sin(3π/32) + · · ·+
√

sin(15π/32)
)

≈ 1.20344

3. State whether M10 underestimates or overestimates

∫ 4

1

ln x dx.
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Let f(x) = ln x. Then f ′(x) = 1/x and

f ′′(x) = − 1

x2
< 0

on [1, 4], so f(x) is concave down, and M10 overestimates the integral.
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Chapter 7 AP Problems

For 1, 2, 4 and 5, a calculator may be used. For 3 and 6, no calculator allowed.

1. A continuous function f has the values shown in the table below for selected x-values in
the interval [0, 4].

x 0 1 2 3 4
f(x) a b c c a

If T2 is the trapezoidal approximation of

∫ 4

0

f(x) dx with two equal subintervals and T4

is the trapezoidal approximation of

∫ 4

0

f(x) dx with four equal subintervals, then T2−T4

is equal to:

A. 0

B. a− b

C. a+ b

D. a+ b+ c

E. b+ 2c

2. For k > 0 and n an integer such that n ≥ 2,

∫

xn−1 ln(x) dx =

A.
n

x
xn + C

B. nxn − ln(x) + C

C.
xn

2
(ln(x))2 + C

D. xn−2 − x ln(x) + C

E.
xn

n
ln(x)− 1

n2
xn + C
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3. If the substitution u = sec x is used to transform

∫ π/4

0

tanx dx, which of these is an

equivalent integral expression?

A.

∫ π/4

0

u du

B.

∫ π/4

0

1

u
du

C.

∫ √
2

1

u
√
u du

D.

∫ √
2

1

1

u
du

E.

∫ π/4

0

u
√
1 + u2 du

4. If the substitution x = 3 sin θ is used, then

∫
x2

(9− x2)3/2
dx is equivalent to

A.

∫
1

3
sec3(θ) dθ

B.

∫
1

3
tan3(θ) dθ

C.

∫

tan2(θ) dθ

D.

∫

csc(θ) dθ

E.

∫
1

3
tan2(θ) sec(θ) dθ
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5. A region R in the first quadrant is bounded by the curve f(x) =
1

x(x− k)
, the x-axis,

and the lines x = a and x = b, where k > 0 and a < b.

a. Set up, but do not integrate, and integral expression that could be used to find the
area of R.

b. Using integration by partial fractions, find the general antiderivative of the expression
in part (a). Show the work that leads to your answer.

c. Compute the area of R when a = 2k and b = 4k.

6. What are ALL values of p for which

∫ ∞

1

1

x2p−1
dx diverges?

A. p < 1/2

B. p > 1/2

C. p > 1

D. p < 1

E. The integral diverges for all values of p
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Solutions to Chapter 7 AP Problems

1. A continuous function f has the values shown in the table below for selected x-values in
the interval [0, 4].

x 0 1 2 3 4
f(x) a b c c a

If T2 is the trapezoidal approximation of

∫ 4

0

f(x) dx with two equal subintervals and T4

is the trapezoidal approximation of

∫ 4

0

f(x) dx with four equal subintervals, then T2−T4

is equal to:

A. 0

B. a− b

C. a+ b

D. a+ b+ c

E. b+ 2c

B [THIS PROBLEM CORRESPONDS WITH SECTION 7.8]

2. For k > 0 and n an integer such that n ≥ 2,

∫

xn−1 ln(x) dx =

A.
n

x
xn + C

B. nxn − ln(x) + C

C.
xn

2
(ln(x))2 + C

D. xn−2 − x ln(x) + C

E.
xn

n
ln(x)− 1

n2
xn + C

E [THIS PROBLEM CORRESPONDS WITH SECTION 7.1]
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3. If the substitution u = sec x is used to transform

∫ π/4

0

tanx dx, which of these is an

equivalent integral expression?

A.

∫ π/4

0

u du

B.

∫ π/4

0

1

u
du

C.

∫ √
2

1

u
√
u du

D.

∫ √
2

1

1

u
du

E.

∫ π/4

0

u
√
1 + u2 du

D [THIS PROBLEM CORRESPONDS WITH SECTION 7.2]

4. If the substitution x = 3 sin θ is used, then

∫
x2

(9− x2)3/2
dx is equivalent to

A.

∫
1

3
sec3(θ) dθ

B.

∫
1

3
tan3(θ) dθ

C.

∫

tan2(θ) dθ

D.

∫

csc(θ) dθ

E.

∫
1

3
tan2(θ) sec(θ) dθ

C [THIS PROBLEM CORRESPONDS WITH SECTION 7.3]
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5. A region R in the first quadrant is bounded by the curve f(x) =
1

x(x− k)
, the x-axis,

and the lines x = a and x = b, where k > 0 and a < b.

a. Set up, but do not integrate, and integral expression that could be used to find the
area of R.

∫ b

a

1

x(x− k)
dx

b. Using integration by partial fractions, find the general antiderivative of the expression
in part (a). Show the work that leads to your answer.

1

x(x− k)
=

A

x
+

B

(x− k)
1 = A(x− k) + Bx

A = −1

k
; B =

1

k∫
1

x(x− k)
dx =

1

k

∫

−1

x
+

1

(x− k)
dx =

1

k
ln

(
x− k

x

)

+ C

c. Compute the area of R when a = 2k and b = 4k.

∫ 3k

2k

1

x(x− k)
dx =

1

k
ln

(
x− k

x

) ∣
∣
∣
∣

4k

2k

=
1

k
[ln(3/4)− ln(1/2)] =

1

k
ln(3/2)

[THIS PROBLEM CORRESPONDS WITH SECTION 7.5]

6. What are ALL values of p for which

∫ ∞

1

1

x2p−1
dx diverges?

A. p < 1/2

B. p > 1/2

C. p > 1

D. p < 1

E. The integral diverges for all values of p

D [THIS PROBLEM CORRESPONDS WITH SECTION 7.6]
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Ray Cannon’s Chapter 8 Overview

Chapter 8 is a relatively short chapter, but covers two important topics in the BC
course description. Section 8.1 deals with arc length of a graph (in the BC course de-
scription) and area of a surface of revolution (optional). The text continues to carefully
develop applications of definite integrals via setting up approximating Riemann sums
as recommended in the BC course description. This method continues in the next two
sections, which cover the optional topics of fluid pressure and its related force in Section
8.2, and Moments and the center of mass in Section 8.3.

Section 8.4 deals with the very important topic of Taylor polynomials, the special case
of Maclaurin polynomials, and the establishment of the error bound on the difference
between the actual value of f(x) and its approximation by P (x). Students should be
familiar with all the terminology in this section, and with the techniques for manipulating
Taylor polynomials found in the exercises. The bound established in the text (Theorem
2) is the same as the Lagrange error bound called for in the course description, but is
arrived at in a way different from using the Lagrange form for the remainder in what is
called Taylors Theorem.
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8. Further Applications

8.1. Arc Length and Surface Area.

Class Time AB 0 periods; BC 1 period. Essential.

This is a BC only topic. Since so little of this chapter needs to be covered in AP courses,
you may wish to hold this section until you get to Section 11.2 where arc length in
parametric form is discussed and include it there. Since the problems are so similar, this
should not present difficulties.

Key Points

• The formula for the arc length of a smooth function f(x) on [a, b] is
∫ b

a

√

1 + f ′(x)2 dx

• Surface area is not tested on the AB or BC exams.

Lecture Material
Discuss how the arc length of a continuous function f(x) over [a, b] can be approximated
by partitioning the interval [a, b] and adding up the lengths of the line segments that
connect the points on the f that correspond to the partition points. Then the actual arc
length is obtained by taking the limit as the width of the partition goes to 0. Use the
Pythagorean Theorem to find the length of each line segment and then apply the Mean
Value Theorem to get the arc length formula. Work Examples 2 and 3 or Exercises 10
and 12.

Discussion Topics/Class Activities
Students could work Exercise 15 in groups or independently.

Suggested Problems
Exercises 7, 9 (basic), 11, 12 (numerical), 18, 25 (harder)
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Worksheet 8.1.
Arc Length and Surface Area

1. Calculate the arc length of the curve y = ln(cosx) over the interval [0,
π

4
].

2. Approximate the arc length of the curve y = sin x over the interval [0,
π

2
] using the

Midpoint Rule M8.
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Solutions to Worksheet 8.1

1. Calculate the arc length of the curve y = ln(cosx) over the interval [0,
π

4
].

1 + (y′)2 = 1 + tan2 x = sec2 x and
∫ π/4

0

√

1 + (y′)2 dx =

∫

sec x dx = ln | sec x+ tan x|
∣
∣
∣

π/4

0
= ln |

√
2 + 1|

2. Approximate the arc length of the curve y = sin x over the interval [0,
π

2
] using the

Midpoint Rule M8.
Since y = sin x,

1 + y′2 = 1 + (cos x)2

Therefore
√

1 + y′2 =
√

1 + (cosx)2, and the arc length over [0, π/2] is
∫ π/2

0

√
1 + cos2 x dx

Let f(x) =
√
1 + cos2 x. M8 is the midpoint approximation with eight subdivisions.

Since, n = 8,

∆x =
π/2

8
= π/16

xi = 0 +

(

i+
1

2

)

∆x (i = 0 . . . 8)

yi = f

((

i+
1

2

)

∆x

)

M8 =

8∑

i=1

(yi)∆x

Since f(x1) = 1.41081, f(x1) = 1.3841, f(x3) = 1.3334, f(x4) = 1.26394, f(x5) =
1.18425, f(x6) = 1.10554, f(x7) = 1.04128, and f(x8) = 1.00479, the arc length is ap-
proximately 1.9101.
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8.2. Fluid Pressure and Force.

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Points

• The fluid pressure at depth h is wh, where w is the density of the fluid.
• If an object is submerged vertically extending from a depth y = a to a depth

y = b, then the total force on a side of the object is F = w

∫ b

a

yf(y) dy, where

f(y) is the horizontal width of the side at depth y.

Lecture Material
Remind students that water pressure is proportional to depth and that the fluid pressure
at a depth h in a fluid of density w (weight per unit volume) is wh. The pressure acts
at each point on the object in the direction perpendicular to the object’s surface at that
point. If the pressure is constant, then the total force acting on a surface is pressure
times area. Students need to know that the density of water is w = 62.5 lb/ft2. Work
Example 1.

Next discuss how an integral can be used to calculate the force on the side of a box
submerged in water. This can be generalized to the side of an object with a width that
can be expressed as a continuous function of y. Work Examples 2 and 3.

If time permits, you can discuss the fluid force on an inclined surface and work Example
4.

Discussion Topics/Class Activities
The students could work Exercise 15 in groups or independently.

Suggested Problems
Exercises 1, (basic), 2, 4, 5 (algebraic), 18, 20 (harder)



362

Worksheet 8.2.
Fluid Pressure and Force

1. A thin plate in the shape of an isosceles triangle with base 1 and height 2 ft is submerged
so that the top of the triangle is 3 feet below the surface of the water, see the figure.
Given that the density of water is 62.5 lb/ft2, write an approximation for the total force F
on the side of the plate as a Riemann sum and indicate the integral to which it converges.

3

2

y+3

1

Dy
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2. Calculate the force on one side of a circular plate of radius 2 ft, submerged vertically in
a tank of water so that the highest point is tangent to the surface of the water.

3. Calculate the fluid force on a square plate of side 3 ft submerged at an angle of 30 degrees
with its top edge at the surface of the water.
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4. The trough in the figure is filled with corn syrup, whose density is 90 lb/ft3, Calculate
the force on the front of the trough.

a

h

d

b
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Solutions to Worksheet 8.2

1. A thin plate in the shape of an isosceles triangle with base 1 and height 2 ft is submerged
so that the top of the triangle is 3 feet below the surface of the water, see the figure.
Given that the density of water is 62.5 lb/ft2, write an approximation for the total force F
on the side of the plate as a Riemann sum and indicate the integral to which it converges.

3

2

y+3

1

Dy

(1) By similar triangles,
y

2
=

f(y)

1
⇒ f(y) =

y

2

(2) On the strip, F ≈ pressure × area = wy × (y/2)∆y = w
y2

2
∆y

(3) F ≈
N∑

j=1

w
y2j
2
∆y → w

2

∫ 5

3

y2 dy (as N → ∞)

(4) F =
w

2

∫ 2

0

y2 dy =
62.5

2
·
(
125

3
− 27

3

)

= 1020.83 lb

2. Calculate the force on one side of a circular plate of radius 2 ft, submerged vertically in
a tank of water so that the highest point is tangent to the surface of the water.
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The width at any depth y is 2
√

4− (2− y)2 = 2
√

4y − y2. Thus,

F = 2ω

∫ 4

0

y
√

4y − y2 dy = 2ω4π = 500π lb

3. Calculate the fluid force on a square plate of side 3 ft, submerged at an angle of 30
degrees with its top edge at the surface of the water.

F =
ω

sin 30◦

∫ 3

0

3y dy = 1687.5

4. The trough in the figure is filled with corn syrup, whose density is 90 lb/ft3. Calculate
the force on the front of the trough.

a

h

d

b

F = ω

∫ h

0

h

(
y(b− a)

h

)

dy = ω

∫ h

0

y(b− a) dy = 45(b− a)h2
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8.3. Center of Mass.

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Points

• If there are n particles with coordinates (xj , yj) and mass mj, j = 1, . . . , n, then
the moments of the system are

Mx = m1y1 + · · ·+mnyn and My = m1x1 + · · ·+mnxn

The center of mass of the system is the point (xcm, ycm), where xcm =
My

M
and

ycm =
Mx

M
with M = m1 + · · ·+mn.

• Suppose a lamina of constant mass density ρ occupies the region between two
continuous functions, f1(x) and f2(x) from x = a to x = b, where f1(x) ≥ f2(x).

The y-moment is My = ρ

∫ b

a

x(f1(x) − f2(x)) dx and the x-moment is Mx =

ρ

2

∫ b

a

(f1(x)
2 − f2(x)

2) dx. The total mass of the lamina is M = ρ

∫ b

a

(f1(x) −
f2(x)) dx. The center of mass called the centroid is the point (xcm, ycm), where

xcm =
My

M
and ycm =

Mx

M
.

• Symmetry Principle: If a lamina of constant mass density is symmetric with
respect to a given line, then the centroid lies on that line.

• Additivity Principle: If a region S consists of two or more smaller regions, then
each moment of S is the sum of the corresponding moments of the smaller regions.

Lecture Material
Every object has a balance point called the center of mass. The object does not rotate
when a force is applied along a line passing through its center of mass. The center of
mass is expressed in terms of quantities called moments. The moment with respect to
x measures the tendency of the object to rotate about the x-axis and the moment with
respect to y measures the tendency of the object to rotate about the y-axis.

First discuss the moments of an individual particle with a given mass and then a
system of n particles with their masses. Do Example 1.

Next consider a plate so thin that it can be thought of as two dimensional. Laminas
used in scientific experiments are considered to be examples. Suppose we have a lamina
of constant mass density ρ occupying a region between two continuous functions, f1(x)
and f2(x) from x = a to x = b, where f1(x) ≥ f2(x). The total mass, M , of the lamina is

density times area; thus M = ρ

∫ b

a

(f1(x) − f2(x)) dx. Use Riemann sums to derive the
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formulas for the moments with respect to y and x. The disadvantage of Equation 2 is
that the lamina has to occupy a region that is both x-simple and y-simple. You might
want to just use Equation 3. Work Exercises 13 and 18.

Discuss the Symmetry Principle and work Exercise 27. End the lecture with the
Additivity Principle and work Example 5.

Discussion Topics/Class Activities
Discuss Exercise 42.

Suggested Problems
Exercises 1, (basic), 4, 5, 9, 14, 15, 19, 23 (algebraic), 26, 32, 33 (harder)
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Worksheet 8.3.
Center of Mass

1. Find the center of mass of the system of particles of mass 4, 2, 5, 1 located at (1, 2), (−3, 3), (2,−1)
and (4, 0) respectively.

2. Find the centroid of the region lying underneath the graph of y = 9−x2 over the interval
[0, 3].



370

3. Find the centroid of the region enclosed by x = 0, y = x− 1, and y = (1− x)3.

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1
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4. Use additivity of moments to find the center of mass of three quarters of the unit circle.
(Remove the part in the fourth quadrant.)



372

Solutions to Worksheet 8.3

1. Find the center of mass of the system of particles of mass 4, 2, 5, 1 located at (1, 2), (−3, 3), (2,−1)
and (4, 0) respectively.

Mx = 4(2) + 2(2) + 5(−1) + 1(0) = 7

My = 4(1) + 2(−3) + 5(2) + 1(4) = 12

M = 12, COM =

(

1,
7

12

)

2. Find the centroid of the region lying underneath the graph of y = 9−x2 over the interval
[0, 3].

Mx =
1

2

∫ 3

0

(9− x2)2 dx = 324/5

My =

∫ 3

0

x(9− x2) dx = 81/4

M =

∫ 3

0

(9− 2x) dx = 18

COM =

(
9

8
,
18

5

)
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3. Find the centroid of the region enclosed by x = 0, y = x− 1, and y = (1− x)3.

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

Mx =
1

2

∫ 1

0

(
(1− x)6 − (x− 1)2

)
dx = −2/21

My =

∫ 1

0

x
(
(1− x3 − (x− 1)

)
dx = 13/60

M =

∫ 1

0

(
(1− x)3 − (x− 1)

)
dx = 3/4

COM =

(
13

45
,
−8

63

)

4. Use additivity of moments to find the center of mass of three quarters of the unit circle.
(Remove the part in the fourth quadrant.)
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By the Symmetry Principle, COM must lie on line y = −x. Let region 1 be the semicircle
above the x-axis and region 2 be the quarter circle in Quadrant III. Then

M1
y = 0 by the Symmetry Principle

M2
y =

∫ 0

−1

x
√
1− x2 dx = −1/3

My = −1/3

M = 3π/4

COM = (−.14, .14)
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8.4. Taylor Polynomials.

Class Time AB 0 periods; BC 2–3 periods. Essential.

Key Points

• The nth Taylor polynomial centered at x = a for the function f(x) is

Tn(x) = f(x) +
f ′(x)

1!
(x− a) +

f ′′(x)

2!
(x− a)2 + · · ·+ f (n)(x)

n!
(x− a)n

When a = 0, this is called the nth Maclaurin poynomial.

• The expression
∣
∣f (n+1)(u)

∣
∣
|x− a|n+1

(n+ 1)!
, where u is a number between a and x, is

called the Lagrange Form of the Remainder or the Lagrange Error Bound. This
is a name that BC students should know. They should also know how to use the
Lagrange Error Bound formula to estimate the absolute value of the error of a
Taylor polynomial approximation.

Lecture Material
Discuss the wish to approximate a nonpolynomial function with a polynomial. Suppose
a function has k derivatives. Define the nth Taylor polynomial for f centered at a for
n = 1, . . . , k as

Tn(x) = f(x) +
f ′(x)

1!
(x− a) +

f ′′(x)

2!
(x− a)2 + · · ·+ f (n)(x)

n!
(x− a)n

When a = 0, it is called the nth Maclaurin polynomial. Derive the nth Maclaurin

polynomials for f(x) = ex, sin x, ln x, and
1

1− x
. These four (only) should be memorized.

Do an example of finding a Taylor series centered at some point other than the origin.
Exercises 20 and 22 would be good illustrations.

For a given function f(x) and its Taylor polynomial, define the nth remainder for f(x)
at x = a by Rn(x) = f(x)−Tn(x). State and prove Taylor’s Theorem that for a function
f whose n+ 1 derivatives exist,

Rn(x) =
1

n!

∫ x

a

(x− u)nf (n+1(u) du

The proof uses Integration by Parts and the Fundamental Theorem of Calculus. State
and prove the error bound for the Taylor polynomial. Now use Taylor’s Theorem to
estimate the size of the error. That is, if K is a number such that |f (n+1)(u)| ≤ K for all

u between a and x, then the error bound is |Tn(x)− f(x)| ≤ K
|x− a|n+1

(n + 1)!
. Do Examples

6 and 7.
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Use a graphing calculator or computer graphing program to reproduce Figure 5 and
continue with n = 12, 14, 16 . . ..

Discussion Topics/Class Activities
Have students use their graphing calculators to work Exercise 28 in groups.

Suggested Problems (2–3 assignments)
Exercises 1, 3, 21, 23, 25 (basic), 27 (graphical), 30, 31, 32 (numerical), 33 (graphical),
37 (algebraic)
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Worksheet 8.4.
Taylor Polynomials

1. Find the Taylor polynomial T3(x) for f(x) =
1

1 + x
centered at a = 1.

2. Find Tn(x) for f(x) = cosx centered at x =
π

4
.

3. Find n such that |Tn(1) −
√
1.3| ≤ 10−6, where Tn is the Taylor polynomial for

√
x at

a = 1.

4. Consider the function f(x) =
1

1− x
.

a. Find the Maclaurin series for f .

b. Find the Maclaurin series for g(x) =
1

1 + x2
by substituting −x2 for x in the Maclaurin

series for f found in part (a).
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Solutions to Worksheet 8.4

1. Find the Taylor polynomial T3(x) for f(x) =
1

1 + x
centered at a = 1.

f(x) =
1

1 + x
f(a) = 1/2

f ′(x) =
−1

(1 + x)2
f ′(a) = −1/4

f ′′(x) =
2

(1 + x)3
f ′′(a) = 1/4

f ′′′(x) =
−6

(1 + x)4
f ′′′(a) = −3/8

T2(x) =
1

2
− (x− 1)

4
+

(x− 1)2

8

T3(x) =
1

2
− (x− 1)

4
+

(x− 1)2

8
− (x− 1)3

16

2. Find Tn(x) for f(x) = cosx centered at x =
π

4
.

f(x) = cosx f(π/4) =
1√
2

f ′(x) = − sin x f ′(π/4) = − 1√
2

f ′′(x) = − cosx f ′′(π/4) = − 1√
2

...
...

f (n)(π/4) =







(−1)
n+1

2

1√
2

, n odd

(−1)
n
2

1√
2

, n even

Tn(x) =
1√
2
− 1√

2
(x− π

4
)− 1

2
√
2
(x− π

4
)2· · ·

3. Find n such that |Tn(1.3)−
√
1.3| ≤ 10−6, where Tn is the Taylor polynomial for

√
x at

a = 1.
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f(x) =
1

x+ 1
f(1) =

1

2

f ′(x) =
−1

(x+ 1)2
f ′(1) = −1

4

f ′′(x) =
2

(x+ 1)3
f ′′(1) =

1

4
...

...

f (n)(x) =
(−1)nn!

(x+ 1)n+1
f (n)(1) =

(−1)nn!

2n+1

Tn(x) =
1

2
− 1

4
(x− 1) +

(x− 1)2

2 · 4 + · · ·+ (−1)n
(x− 1)n

2n+1

|Tn(1.3)−
√
1.3| ≤ K

|.3|n+1

(n + 1)!
. For f(x) =

√
x, f (n)(x) is either negative or decreasing

for x > 1, hence the maximum value of f (n)(x) will happen at x = 1.

|f (n)(1)| = n!

2n+1
(for n ≥ 2) ≤ n!

(.3)n+1

(n + 1)!
< n

3n+1

10n+1
< 10−6 ⇒ n ≥ 9

4. Consider the function f(x) =
1

1− x
.

a. Find the Maclaurin series for f .

f(x) =
1

1− x
f(0) = 1

f ′(x) =
1

(1− x)2
f ′(0) = 1

f ′′(x) =
2

(1− x)3
f ′′(0) = 2

f ′′′(x) =
6

(1− x)4
f ′′′(0) = 6

...
...

f (n)(x) =
n!

(1− x)n+1
f (n)(0) = n!

Tn(x) = 1 + x+ 2x2/2 + 6x3/6 + · · ·+ n!xn/n! = 1 + x+ x2 + x3 + · · ·+ xn

b. Find the Maclaurin series for g(x) =
1

1 + x2
by substituting −x2 for x in the Maclaurin

series for f found in part (a).

f(u) =
1

1− u
⇒ Tn(u) = 1+u+u2+· · ·+un ⇒ Tn(−x2) = 1−x2+x4−x6+· · ·+(−x2)n
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Chapter 8 AP Problems

For 4, a calculator may be used. For 1, 2, 3 and 5, no calculator allowed.

1. The length of a curve from x = 2 to x = 3 is given by

∫ 3

2

√

1 + (12x2 − 4)2 dx. Which

of the following is the equation of the curve if the curve goes through the point (2, 22)?

A. y = 4x3 − 4x

B. y = 4x3 − 4x+ 2

C. y = 4x3 − 4x− 2

D. y = 12x2 − 4

E. y = 12x2 − 94

2. Given the third degree Taylor polynomial 5 − 2(x − 1) + 3(x − 1)2 − 6(x − 1)3 of f(x),
what is the value of f ′′(1)?

A. −36

B. −6

C. 0

D. 6

E. 36
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3. Given f(0) = 2, f ′(0) = 3, and f ′′(0) = 4, which of the following is the second degree
Maclaurin polynomial for f(x)?

A. 2− 3x+ 2x2

B. 2− 3x+ 4x2

C. −2 + 3x− 2x2

D. 2 + 3x+ 2x2

E. 2 + 3x+ 4x2

4. Given the third degree Taylor polynomial 5+2(x−3)+
3

2
(x−3)2+

5

4
(x−3)3, what is the

Lagrange Error Bound when this polynomial is used to estimate f(3.2) if |f (4)(x)| ≤ 4
for all x on the closed interval [3, 3.2]?

A. 0.0000107

B. 0.000267

C. 0.005333

D. 0.013333

E. 0.053333

5. The Maclaurin series for f(x) is given by:

1

2
− x2

23 · 3! +
x4

25 · 5! −
x6

27 · 7! + · · ·+ (−1)n · x2n

22n+1 · (2n+ 1)!

a. Find f ′(0) and f ′′(0) and explain why f(x) has a local maximum, local minimum, or
neither at x = 0.
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b. Let g(x) = 2xf(2x). Give the first three nonzero terms and the general term for g(x).

c. Write g(x) as a familiar function and write f(x) in terms of the same function.
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Solutions to Chapter 8 AP Problems

1. The length of a curve from x = 2 to x = 3 is given by

∫ 3

2

√

1 + (12x2 − 4)2 dx. Which

of the following is the equation of the curve if the curve goes through the point (2, 22)?

A. y = 4x3 − 4x

B. y = 4x3 − 4x+ 2

C. y = 4x3 − 4x− 2

D. y = 12x2 − 4

E. y = 12x2 − 94

C [THIS PROBLEM CORRESPONDS WITH SECTION 8.1]

2. Given the third degree Taylor polynomial 5 − 2(x − 1) + 3(x − 1)2 − 6(x − 1)3 of f(x),
what is the value of f ′′(1)?

A. −36

B. −6

C. 0

D. 6

E. 36

A [THIS PROBLEM CORRESPONDS WITH SECTION 8.4]

3. Given f(0) = 2, f ′(0) = 3, and f ′′(0) = 4, which of the following is the second degree
Maclaurin polynomial for f(x)?

A. 2− 3x+ 2x2
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B. 2− 3x+ 4x2

C. −2 + 3x− 2x2

D. 2 + 3x+ 2x2

E. 2 + 3x+ 4x2

D [THIS PROBLEM CORRESPONDS WITH SECTION 8.4]

4. Given the third degree Taylor polynomial 5+2(x−3)+
3

2
(x−3)2+

5

4
(x−3)3, what is the

Lagrange Error Bound when this polynomial is used to estimate f(3.2) if |f (4)(x)| ≤ 4
for all x on the closed interval [3, 3.2]?

A. 0.0000107

B. 0.000267

C. 0.005333

D. 0.013333

E. 0.053333

B [THIS PROBLEM CORRESPONDS WITH SECTION 8.4]

5. The Maclaurin series for f(x) is given by:

1

2
− x2

23 · 3! +
x4

25 · 5! −
x6

27 · 7! + · · ·+ (−1)n · x2n

22n+1 · (2n+ 1)!

a. Find f ′(0) and f ′′(0) and explain why f(x) has a local maximum, local minimum, or
neither at x = 0.

f ′(0) = 0; f ′′(0) = − 1

24
There is a critical point at x = 0 since f ′(0) = 0, and it is a local maximum since

f ′′(0) < 0 (Second Derivative Test).

b. Let g(x) = 2xf(2x). Give the first three nonzero terms and the general term for g(x).



386

g(x) = x− x3

3!
+

x5

5!
− · · ·+ (−1)nx2n+1

(2n+ 1)!

c. Write g(x) as a familiar function and write f(x) in terms of the same function.

g(x) = sin x; f(x) =
sin(x/2)

x
if x 6= 0, and f(x) = 1/2 if x = 0

[THIS PROBLEM CORRESPONDS WITH SECTION 8.4]
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Ray Cannon’s Chapter 9 Overview

Section 9.1 is an overview of what a differential equation is, and emphasizes that a
solution is a function, which has a domain. Several questions on the AP examination have
demanded exactly this knowledge from students. Section 9.2 presents several applications
that lead to the equation y′ = k(y−b) and equations of this type have frequently appeared
on both AB and BC exams. Refer back to the growth-decay differential equation in
section 5.8 at this point. Section 9.3 introduces slope fields and solution curves, which
are common topics. This section also treats Eulers method of numerical approximations,
which is a BC-only topic. The logistic differential equation is also a BC-only topic,
and is covered in Section 9.4 The last section deals with first-order linear equations and
integrating factor which are not required topics in either AP course description.
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9. Introduction to Differential Equations

9.1. Solving Differential Equations.

Class Time AB 3 periods; BC 2 periods. Essential.

Key Points

• General and particular solutions of a differential equation.
• Classification of differential equations.

(i) The order of a differential equation.
(ii) Linear and nonlinear differential equations.
(iii) Separable equations

• Initial value problems.

Lecture Material
Introduce differential equations with examples such as

(1) y′(x) = 3x2

(2) (y′)3 + y′′ = sin x

(3)
d2y

dx2
+ y = ex

(4) y′′′ − y′′ + y′ − y = t

(5)
dy

dt
= t−2(y − 1)

Examples (2), (3) and (4) are types of differential equations that are not tested on
either the AB or BC exams. Examples (1) and (5) are separable differential equations,
which are tested.

A solution to a differential equation is a function (not a number) that when substituted
into the given differential equation with its derivative(s) satisfies the differential equation.

A particular solution of a differential equation has a domain that is the largest open
interval containing the initial condition and on which the solution satisfies the differential
equation. In other words, the solution cannot cross an asymptote or contain a point where
the differential equation or its solution is not defined.

The only method that AB and BC students are expected to know is separation of
variables. The general solution includes an arbitrary constant. Evaluating the constant
using a given initial condition gives the particular solution — this is called an initial

value problem.
Separable equations are equations that can be expressed in the form y′(x) = f(x) g(y).

Solve Equation (5) over the interval 0 < t < ∞ by separating variables and integrating.
See Examples 1, 2, and 3, and Exercises 29, 33, 39, and 41.
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Discussion Topics/Class Activities
Exercises 52, 54, 56 and 58 provide nice examples of how separable equations arise in
applications.

Suggested Problems (2–3 assignments)
Exercises 5, 9, 10, 11, 15, 16, 18, 19, 21, 23, 27, 31, 33, 41
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Worksheet 9.1.
Solving Differential Equations

1. Find the general solutions of the following using separation of variables.

a.
dy

dt
− 2y = 1

b. (1 + x2)y′ = x3y

2. Solve the initial value problem

a.

{

y′ + 2y = 0

y(ln 2) = 3

b.







dy

dx
= (x− 1)(y − 2)

y(0) = 3
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3. Find the family of curves satisfying y′ = x/y and sketch several members of the family.

-10 -5 5 10

-10

-7.5

-5

-2.5

2.5

5

7.5

10
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Solutions to Worksheet 9.1

1. Find the general solutions of the following using separation of variables.

a.
dy

dt
− 2y = 1: y = −1

2
+ Ce2t.

b. (1 + x2)y′ = x3y: y =
Cex

2/2

√
1 + x2

.

2. Solve the initial value problem

a.

{

y′ + 2y = 0

y(ln 2) = 3
y = 12e−2x.

b.







dy

dx
= (x− 1)(y − 2)

y(0) = 3
y = 2 + ex

2/2−x.

3. Find the family of curves satisfying y′ = x/y and sketch several members of the family.

y2 − x2 = C

-10 -5 0 5 10
-10

-5

0

5

10
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9.2. Models involving y′ = k(y − b).

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Points

• The general solution of y′ = k(y − b) is y = b+ Cekt where C is a constant.
• Long term behavior of y = b+ Cekt and y = b+ Ce−kt (k > 0).
• Applications.

(1) Newton’s Law of Cooling.
(2) Modeling a free-falling body with air resistance.

Lecture Material
Derive the general solution y = b+Cekt of y′(t) = k(y(t)−b) and sketch graphs of solutions
for a few values C (positive and negative) and k (positive and negative). Example 1
applies the differential equation to model how an object cools. Example 2 models the
velocity of a free-falling body with air resistance, and Example 3 discusses annuities.
Exercise 23 gives an application to electrical circuits using Ohm’s Law.

Discussion Topics/Class Activities
Some people believe that, everything else being equal, warmer water placed in an ice
cube tray in the freezer will freeze faster than cooler water. Is this fact or fiction?

Suppose that the ambient temperature of the freezer is 10◦ Fahrenheit, and a tray of
60◦ water takes 3 hours to reach 32◦. (Assume that the freezer is large enough so that the
water does not appreciably raise the ambient temperature of the freezer.) According to
Newton’s law of cooling, the temperature function has form y60(t) = 10 + 50e−kt. Since
y60(3) = 32, it follows that

k = −1

3
ln

(
22

50

)

.

The temperature of a tray of water with initial temperature x > 32◦ after t hours in the

freezer is therefore yx(t) = 10 + (x− 10)e
t
3
ln .44, and the time it takes to cool to 32◦ is

T (x) =
3

ln .44
ln

(
22

x− 10

)

.

Thus T ′(x) =
−3

ln .44
(x− 10)−2. Since T ′(x) > 0 for all x > 32, the time for water at an

initial temperature x > 32 to freeze is an increasing function of x. The assertion is false.
It is true, however, that warmer water is always cooling faster than cooler water.

Suggested Problems
Exercises 1, 2 (basic), 4, 5, 6 (cooling), 11, 13, 14 (free-fall), 15, 17 (annuities), 23
(electrical current)
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Worksheet 9.2.

Models Involving y′ = k(y − b)

1. Find the general solution of y′ = −3(y−2) and graph two solutions satisfying (a) y(0) = 0
(b) y(0) = 4.

1 2 3 4 5 6 7

1

2

3

4

2. A hot metal bar is submerged in a large reservoir of 70◦ water. After 30 seconds, the
temperature of the bar is 200◦, and its temperature is 150◦ 30 seconds later.

a. Determine the cooling constant k

b. Find the formula for the temperature of the bar t seconds after it is immersed.

c. What was the temperature of the bar at the moment it was submerged?
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3. Let v(t) denote the velocity (m/s) of a 1 kg object dropped from the top of a tall building
t seconds after its release. If air resistance at time t is 4v(t)kgm/s2,

a. find the formula for v(t).

b. What is the terminal velocity of the object?

4. What is the minimum initial deposit necessary to fund an annuity for 20 years if with-
drawals are made at a rate of $ 20, 000 dollars per year at an annual interest rate of
5%?
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Solutions to Worksheet 9.2

1. Find the general solution of y′ = −3(y − 2) and graph two solutions satisfying

a. y(0) = 0: y = 2(1− e−3t)

b. y(0) = 4: y = 2(1 + e−3t).

0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

2.5

3

3.5

4

2. A hot metal bar is submerged in a large reservoir of 70◦ water. After 30 seconds, the
temperature of the bar is 200◦, and its temperature is 150◦ 30 seconds later.

a. Determine the cooling constant k: k =
1

30
ln

(
8

13

)

b. Find the formula for the temperature of the bar t seconds after it is immersed. T (t) =

70 +
845

4
ekt.

c. What was the temperature of the bar at the moment it was submerged? T (0) = 281.25◦

3. Let v(t) denote the velocity (m/s) of a 1 kg object dropped from the top of a tall building
t seconds after its release. If air resistance at time t is 4v(t)kgm/s2,

a. find the formula for v(t). v(t) =
gm

k
(e−4t − 1) = 2.45(e−4t − 1) m/s.

b. What is the terminal velocity of the object? lim
t→∞

v(t) = 2.45m/2.

4. What is the minimum initial deposit necessary to fund an annuity for 20 years if with-
drawals are made at a rate of $ 20, 000 dollars per year at an annual interest rate of 5%?

0 = P (20) =
20000

.05
+ Ce.05∗20 ⇒ C = −400000

e
≈ −147151.78. Thus the minimum

initial deposit is 400, 000
e− 1

e
≈ $ 252, 848.
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9.3. Graphical and Numerical Methods.

Class Time AB 3 periods; BC 2 periods. Very important.

Key Points

• ẏ = dy
dt

• ẏ = F (t, y) describes the slope ẏ(t) in terms of the location (t, y(t)).
• The slope field for ẏ = F (t, y).

Lecture Material
Have students draw slope fields by hand to help them understand what they represent.
Of course, slope fields are better drawn by computer. Have students also sketch solutions
to differential equations on computer-generated print-outs of slope fields, by starting at
the initial point and following the slope field in both directions. Both of these sketching
methods have been tested on AP calculus exams.

A solution of the differential equation ẏ = F (t, y) is referred to as an integral curve,
and the equation ẏ = F (t, y) may be thought of as describing the slope of an integral
curve y = y(t) at the point (t, y(t)) in terms of the location (t, y(t)).

A slope field for the equation ẏ = F (t, y) represents the differential equation graphically
by sketching a short line segment with slope F (tj , yk) and midpoint (tj , yk), for an array
of points (tj, yk), 1 ≤ j ≤ n, 1 ≤ k ≤ m. Example 1 discusses the use of isoclines to
construct slope fields. Also see Exercises 5 and 6. The graph of an integral curve follows
the slope field as in Figure 2.

Euler’s Method is a BC topic that is not tested on the AB exam. However, it may be
included in AB courses.

Euler’s method produces a numerical approximation to an initial value problem

y′ = F (t, y) y(t0) = y0

by constructing a sequence of points (tk, yk) recursively. The polygon with vertices
(tk, yk), 0 ≤ k ≤ N , approximates the graph of the solution y(t).

For a fixed time step h, let tk = t0+k h and suppose that we have obtained correspond-
ing points (tk, yk) for j = 0, 1, . . . , n. Since y′(t) = F (t, y(t)), a linear approximation gives

y(tn+1) = y(tn + h) ≈ y(tn) + y′(tn)h ≈ yn + F (tn, yn)h

Thus we define the next point in the sequence by

yn+1 = F (tn, yn)h

See Examples 3 and 4 and Exercises 14–19. Computer algebra systems are particularly
useful in constructing slope fields and implementing Euler’s method.
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Example The semicircle y =
√
1− x2 solves the initial value problem

y′ = −x/y y(−.9) =
√
0.19.

Use Euler’s method with a time step h = 0.01 to construct a numerical approximation
and compare the graphs, −0.9 ≤ x ≤ 0.9.
Solution Set h = 0.01 and define

xk = −0.9 + kh, and yk = yk−1 − xk−1/yk−1h

for 0 ≤ k ≤ 180. The graphs are compared on the accompanying slide.

Discussion Topics/Class Activities
Compare graphs of exact solutions of Exercises 14 and 19 with numerical approximations
obtained by Euler’s methods for various values of the time step h.

Suggested Problems
Exercises 1, 2, 3, 8, 9, 10, 11 (slope fields and integral curves); BC only: 13, 15, 19
(Euler’s method)
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Worksheet 9.3.
Graphical and Numerical Methods

1. Use the slope field for y′ = t+ y2 below to sketch the graphs of the solutions with initial
conditions (a) y(−3) = 1 and (b) y(−3) = −3.

-2 -1 0 1 2

-2

-1

0

1

2

3

y'= t+y2
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2. Consider the initial value problem y′ = t− y, y(0) = 0.

a. Verify that y(t) = e−t + t− 1 is a solution.

b. For a given time step h, let tk = kh and let yk be the approximation to y(tk) given by
Euler’s method. So the sequence yk, 0 ≤ k is define recursively by

y0 = 0 and yk = (tk−1 − yk−1)h = (k − 1)h2 + yk−1(1− h) if k ≥ 1.

Show that y1 = 0 and that for k ≥ 2, yk = −1 + (1− h)k + hk.

c. Use h = 0.1 and plot the polygon with vertices (tk, yk), k = 0, 1, 2, . . . , 10, on the graph
of y(t) = e−t + t− 1 below.

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y=ã-t
+x-1
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Solutions to Worksheet 9.3

1. Use the slope field for y′ = t+ y2 below to sketch the graphs of the solutions with initial
conditions (a) y(−3) = 1 and (b) y(−3) = −3.

-2 -1 0 1 2

-2

-1

0

1

2

3
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2. Consider the initial value problem y′ = t− y, y(0) = 0.

a. Verify that y(t) = e−t + t− 1 is a solution.
If y(t) = e−t + t− 1, then y′(t) = −e−t + 1 = −e(−t+t− 1) + t = t− y(t).

b. For a given time step h, let tk = kh and let yk be the approximation to y(tk) given by
Euler’s method. So the sequence yk, 0 ≤ k is defined recursively by

y0 = 0 and yk = (tk−1 − yk−1)h = (k − 1)h2 + yk−1(1− h) if k ≥ 1.

Show that y1 = 0 and that for k ≥ 2, yk = −1 + (1− h)k + hk.
If yk = −1+(1−h)k+hk, then yk+1 = kh2+yk(1−h) = kh2+(−1+(1−h)k+hk)(1−h) =

−1 + (1− h)k+1 + h(k + 1) and the formula follows by induction.

c. Use h = 0.1 and plot the polygon with vertices (tk, yk), k = 0, 1, 2, . . . , 10, on the graph
of y(t) = e−t + t− 1 below.

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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9.4. The Logistic Equation.

Class Time AB 0 periods; BC 1 period. Important.

Key Points

• The logistic equation y′ = ky
(

1− y

A

)

.

• Long-term behavior of solutions of a logistic equation.

Lecture Material
Unconstrained populations grow exponentially, P (t) = P0e

kt; see Section 5.8. But in
practice, and especially over longer periods of time, population growth is limited by the
capacity of the environment and competition for resources. A logistic equation is often
used in this case. The general logistic equation is

dy

dt
= ky

(

1− y

A

)

, (∗)

where k > 0 is the growth rate as in the exponential model (in units time−1) and the
constant A is the carrying capacity of the model. The logistics equation is solved by
separating variables and applying a partial fractions decomposition (Section 7.5):

kt+ lnC =

∫
1

y
(
1− y

A

)
dy

dt
dt =

∫ (
A

y
− 1

y − A

)

dy

= ln

∣
∣
∣
∣

y

y −A

∣
∣
∣
∣
.

Thus
y

y − A
= Cekt for some constant C. Solving algebraically for y yields the solution

to (∗) given by

y =
A

1− e−kt/C
,

and if y0 = y(0), then C =
y0

y0 − A
.

Equation (∗) also has two steady-state solutions (equilibria), y = A and y = 0. Assume
at first that A, k > 0. Then

(1) If 0 < y0 < A then C =
y0

y0 − A
< 0 and (∗) implies that y′(t) > 0 for all t. Thus

y(t) =
A

1 + e−kt/|C| increases to A as t → ∞ and lim
t→−∞

y(t) = 0. In terms of

populations, this says that if the initial population y0 is less than the capacity A,
then the population will grow with limiting value A.
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(2) If y0 > A, then C =
y0

y0 −A
> 1 and y(t) =

A

1− e−kt/C
has a vertical asymptote

at t0 = − 1
k
lnC < 0; in particular, y(t) is defined for all t ≥ 0. (∗) implies that

y′(t) < 0, and so y(t) =
A

1− e−kt/C
decreases to A while lim

t→−∞
y(t) = 0. Thus a

logistic model of a population predicts that in the case that the initial population
exceeds the capacity, then the population y(t) will decline to A in the limit.

(3) If y0 < 0 (which does not occur in population models), then 0 < C < 1, and

y(t) =
A

1− e−kt/C
has a vertical asymptote at t0 = − 1

k
lnC, positive. In this

case, y(t) decreases to −∞ as t → t0+, lim
t→t0−

y(t) = ∞ and y(t) decreases to A

on the interval (t0,∞) as t → ∞.

Thus the steady-state solution y = A is a stable equilibrium in the sense that every
non-constant solution approaches it for large values of t, while y = 0 is unstable since all
other solutions diverge away from it as t → ∞.

Asymptotic behavior of solutions is illustrated in the accompanying slide. Examples
1 and 2 are basic. Also see Exercises 2 and 3. Exercises 8 and 9 model the spread of a
rumor (or of a disease) through a population.

The case that k < 0 is considered in Exercise 12 with specific examples given in
Exercises 11 and 1. When k < 0 and 0 < A < y0, the solution y(t) has a vertical

asymptote at t0 = −1/k ln
(

y0
y0−A

)

> 0.

The AP Calculus BC exams have not required students to actually solve a logistic
differential equation. Students are expected to know the shape and behavior of the
solution:

• The horizontal asymptotes are when
dy

dx
= 0. That is, at y = 0 and y = A (Figure

2).

• The population is increasing fastest at y =
1

2
A. This is the location of the point

of inflection of the solution.

Discussion Topics/Class Activities
Exercise 12 outlines an analysis of population dynamics modeled by a logistic equation
with negative growth rate (k < 0).

Suggested Problems
Exercises 3, 5, 7, 8, 9 (routine), 13 (abstract), 15 (CAS)
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Worksheet 9.4.
The Logistic Equation

1. Find the solutions of y′ = 1
2
y
(
1− y

4

)
with initial values (a) y(0) = 1 and (b) y(0) = 6. and

(c) y(0) = −1. Sketch their graphs on the slope field below and discuss their asymptotic
behavior.

2 4 6 8 10
-2

0

2

4

6

8

y’= 1�2 y H1-y�4L
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2. Find the solutions of y′ = −1
3
y (3− y) with initial values (a) y(0) = 2 and (b) y(0) = −2.

and (c) y(0) = 3.5. Sketch their graphs on the slope field below and discuss their
asymptotic behavior.

0.5 1 1.5 2 2.5 3

-2

0

2

4

6

dy
��������
dt
= -1�3 y H3-yL
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Solutions to Worksheet 9.4

1. Find the solutions of y′ = 1
2
y
(
1− y

4

)
with initial values

a. y(0) = 1: y =
4et/2

3 + et/2
, y ր 4 as t → ∞.

b. y(0) = 6: y =
12et/2

−1 + 3et/2
, y ց 4 as t → ∞. and

c. y(0) = −1: y =
4et/2

−5 + et/2
has a vertical asymptote at t = 2 ln 5 ≈ 3.22.

2 4 6 8 10

-4

-2

2

4

6

8

2. Find the solutions of y′ = −1
3
y (3− y) with initial values

a. y(0) = 2: y =
6

2 + et
, t ց 0 as t → ∞.

b. y(0) = −2: y =
6

2− 5et
, t ր 0 as t → ∞, and

c. y(0) = 3.5: y =
21

et − 7
, has a vertical asymptote at t = ln 7 ≈ 1.95.

0.5 1 1.5 2 2.5 3

-6

-4

-2

2

4

6
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9.5. First-Order Linear Equations.

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Points

• a(x)y′ + b(x)y = c(x), a(x) 6= 0.
• Integrating factors.

Lecture Material
Suppose that a(x), b(x) and c(x) are continuous functions on an interval I with a(x) 6= 0
for all x in I. Then we may divide through by a(x) to obtain an equivalent equation

y′ + A(x)y = B(x) (∗)
where A(x) = b(x)/a(x) and B(x) = c(x)/a(x).

The solution of (∗) is obtained by again multiplying through by a non-vanishing func-
tion α(x) so that

α(x)y′(x) + α(x)A(x)y(x) =
(
α(x)y(x)

)′
.

By the product rule, it follows that α′(x) = A(x)α(x), and we solve this equation for α
by separating variables:

∫
1

α(x)
α′(x) dx =

∫

A(x) dx

or

α(x) = e
∫
A(x) dx. (∗∗)

We obtain the general solution of (∗) to be

y(x) =
1

α(x)

(∫

α(x)B(x) dx+ C

)

.

In practice, the integrals involved may be impossible to evaluate in closed form and so
numerical methods must be used.

Examples 1 and 2 are routine, as are Exercises 5–18 (finding general solutions) and
Exercises 19–25 (initial value problems). Example 3 and Exercises 28–30 present an
important application–mixing solutions. Exercises 33–35 show how such equations arise
in electrical circuits.

Discussion Topics/Class Activities
Exercises 36 and 37 are good applications that show how systems of differential equations
naturally arise.

Suggested Problems
Exercises 5, 8, 14 (general solutions), 19, 21, 23, 25 (initial value problems), 28, 29
(mixing), 33 (electrical circuit)
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Worksheet 9.5.
First-Order Linear Equations

1. Solve the initial value problem y′ = cosx − y tanx, −π/2 < x < π/2 with y(0) = 0.
Sketch the graph on the slope field below.

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

dy
��������
dt
= cosHxL - y tanHxL

2. A stream feeds into a lake at a rate of 1000 m3 per day. Assume that the stream is
polluted with a toxin whose concentration is 5 grams/m3. Assume further that the lake
has volume 106 m3 and that water flows out of the lake at the same rate of 1000 m3 per
day. Set up and solve a differential equation for the concentration c(t) of toxin in the
lake t after it begins to flow into the lake. Assume that c(0) = 0 and, for simplicity, that
the toxin is continuously mixed in the lake. What is the limiting concentration as t gets
large?



410

Solutions to Worksheet 9.5

1. Solve the initial value problem y′ = cosx − y tanx, −π/2 < x < π/2 with y(0) = 0.
Sketch the graph on the slope field below.

y(t) = t cos(t).

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

2. A stream feeds into a lake at a rate of 1000 m3 per day. Assume that the stream is
polluted with a toxin whose concentration is 5 grams/m3. Assume further that the lake
has volume 106 m3 and that water flows out of the lake at the same rate of 1000 m3 per
day. Set up and solve a differential equation for the concentration c(t) of toxin in the
lake t after it begins to flow into the lake. Assume that c(0) = 0 and, for simplicity, that
the toxin is continuously mixed in the lake. What is the limiting concentration as t gets
large?

If y(t) and c(t) denote respectively the amount (grams) and concentration (g/m3) of
toxin t days after it begins to enter the lake, then c(t) = y(t)/106 and y′(t) = 5 ∗ 103 −
c(t) ∗ 103 or c′(t) = 5 ∗ 10−3 − 10−3c(t) with c(0) = 0. Thus c(t) = 5(1 − e−10−3t) and
c(t) → 5 as t → ∞.
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Chapter 9 AP Problems

1. Let y = f(x) be the solution to the differential equation
dy

dx
=

x

y2
with initial condition

f(0) = 1. Then f(x) =

A. 2x

B.
3

√

3x2 +
1

3

C. 3
√
3x+ 1

D.
3
√
3x2 + 1

E.
3

√

3

2
x2 + 1

2. Below is a slope field for which of the following differential equations?

x

y

A.
dy

dx
=

x

y

B.
dy

dx
=

y

x

C.
dy

dx
= −x

y

D.
dy

dx
= −y

x

E.
dy

dx
= −x2

y
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3. The logistic equation P (t) =
400

1− 2e−0.4t
represents the population of squirrels in a 2,000

acre forest. The population is growing fastest when the population is

A. 50

B. 100

C. 200

D. 300

E. 400
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Solutions to Chapter 9 AP Problems

1. Let y = f(x) be the solution to the differential equation
dy

dx
=

x

y2
with initial condition

f(0) = 1. Then f(x) =

A. 2x

B.
3

√

3x2 +
1

3

C. 3
√
3x+ 1

D.
3
√
3x2 + 1

E.
3

√

3

2
x2 + 1

E [THIS PROBLEM CORRESPONDS WITH SECTION 9.1]

2. Below is a slope field for which of the following differential equations?

x

y

A.
dy

dx
=

x

y

B.
dy

dx
=

y

x

C.
dy

dx
= −x

y

D.
dy

dx
= −y

x

E.
dy

dx
= −x2

y

C [THIS PROBLEM CORRESPONDS WITH SECTION 9.3]
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3. The logistic equation P (t) =
400

1− 2e−0.4t
represents the population of squirrels in a 2,000

acre forest. The population is growing fastest when the population is

A. 50

B. 100

C. 200

D. 300

E. 400

C [THIS PROBLEM CORRESPONDS WITH SECTION 9.4]
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Ray Cannon’s Chapter 10 Overview

Chapter 10 covers a major topic that is solely in the BC course description and is a very
difficult topic to master, namely, infinite series. Be sure that plenty of time is allocated
for this chapter; it cannot be rushed through. The first section deals with sequences,
and what it means for a sequence to converge. Section 10.2 starts the difficult subject
of convergence of infinite series with attention to two special kinds of series: telescoping
and geometric. Section 10.3 deals with series with positive terms, obtaining the integral
test, thus the p-series test, and both the direct comparison test and the limit comparison
test.

The next section treats the alternating series test with the corresponding error bound.
Section 10.5 has both the ratio test, which is required, and the root test, which is optional.
Now the student is prepared for Section 10.6 dealing with power series, the radius of
convergence, and the interval of convergence. This section also includes the topic of using
power series to solve differential equations; while this topic is not specifically mentioned
in the course description, it does give students practice in formal manipulation of series.
The last section of this chapter, 10.7, deals with Taylor series in general, and Maclaurin
series in particular, and provides more practice in producing new Taylor series by formal
manipulation of known series. There is a wealth of material in this chapter and students
seldom feel comfortable with the topic of infinite series going into the exam. “The series
question” is often the one with the lowest mean; if a student does well with series, almost
assuredly the student will get a good score on the exam.
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10. Infinite Series

10.1. Sequences.

Class Time AB 0 periods; BC 2 periods. Essential.

Key Points

• A sequence is a function f whose domain is a subset of the integers. We write
an = f(n) for the nth term and denote the sequence by {an} or just an.

• We say an approaches a limit L, and write lim
n→∞

an = L or an → L if for every

ǫ > 0, there exists a number N0 such that

|an − L| < ǫ for all n > N0

If no such limit exists, we say that an diverges.
• If an = f(n) is defined by f(x) and lim

x→∞
f(x) = L, then lim

n→∞
an = L

• A geometric sequence is a sequence of the form an = crn, where c and r are
constants.

• The Basic Limit Laws and the Squeeze Theorem apply to sequences.
• If f is a continuous function and lim

n→∞
an = L, then lim

n→∞
f(an) = f(L).

• The sequence an is bounded above by M if an ≤ M for every n and bounded
below by M if an ≤ M for every n. Also, an is bounded if it is bounded above
and below.

• A sequence an is monotonic if an ≤ an+1 or an ≥ an+1. Thus a sequence is
monotonic if it is term by term increasing or decreasing.

• Theorem: Every bounded monotonic sequence converges.

Lecture Material
A sequence is a function f(n) whose domain is a subset of integers. The value an = f(n)
is a term and n is the index. We usually write {an} or simply an to represent a sequence.
Work Exercises 2 and 4 to ensure that students understand the basic definitions. A
sequence an converges to a limit L, written lim

n→∞
an = L or an → L if, for every ǫ > 0,

there is a number M such that |an−L| < ǫ for all n > M . Figure 2 may help illustrate the
formal definition of this limit. If a sequence does not converge, we say that it diverges.
A useful tool for determining if sequences converge is the following result (Theorem 2):
If lim

x→∞
f(x) exists, then an = f(n) converges to the same limit: lim

n→∞
an = lim

x→∞
f(x).

Work Exercises 16 and 18 to illustrate the use of this result. A geometric sequence is
a sequence of the form an = crn, where c and r are constants - r is the common ratio.
Show that
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lim
n→∞

rn =







0 if 0 < r < 1
1 if r = 1
diverges to ∞ if r > 1

and work Exercise 20. Now point out that the Basic Limit Laws, as well as the Squeeze
Theorem, hold for sequences. This then implies the following result (Theorem 4): If
f(x) is continuous and lim

n→∞
an = L exists, then lim

n→∞
f(an) = f( lim

n→∞
an) = f(L). Work

Exercises 28, 35 and 68 to illustrate these results.
A sequence an is bounded above if there is a number M such that an ≤ M for all n,

and M is an upper bound. Bounded below and lower bounds are defined analogously.
We say that an is bounded if it is both bounded above and below, and unbounded oth-
erwise. If a sequence is convergent, it is bounded (Theorem 5), and if it is monotonically
increasing and bounded above or monotonically decreasing and bounded below, then it
is convergent, and converges to a number less than (greater than) or equal to the upper
(lower) bound (Theorem 6). Work Exercise 12 to illustrate these results.

Discussion Topics/Class activities
Work Exercise 87, which gives a mean different from the typical arithmetic mean. Also
discuss Exercise 80 to illustrate its use.

Suggested Problems
Exercises 3, 5, 7, 15, 17, 27, 35, 37, 67
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Worksheet 10.1.
Sequences

1. Calculate the first four terms of the sequence bn = cos πn, starting with n = 1.

2. Calculate the first four terms of the sequence bn = 2 + (−1)n, starting with n = 1.

3. Use Theorem 2 to determine the limit of the sequence bn =
3n + 1

2n + 4
or state that the

sequence diverges.

4. Use Theorem 2 to determine the limit of the sequence cn = 4(2n) or state that the
sequence diverges.
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5. Determine the limit of the sequence yn =
en

2n
or show that the sequence diverges (justifying

each step using the appropriate Limit Laws or Theorems).

6. Determine the limit of the sequence an =

√
n√

n + 4
or show that the sequence diverges

(justifying each step using the appropriate Limit Laws or Theorems).

7. Determine the limit of the sequence bn = en
2−n or show that the sequence diverges

(justifying each step using the appropriate Limit Laws or Theorems).

8. Determine the limit of the sequence bn =
3− 4n

2 + 7 · 4n or show that the sequence diverges

(justifying each step using the appropriate Limit Laws or Theorems).

9. Show that an =
3n2

n2 + 2
is strictly increasing. Find an upper bound.
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Solutions to Worksheet 10.1

1. Calculate the first four terms of the sequence bn = cos πn, starting with n = 1.
Setting n = 1, 2, 3, 4 into the formula for bn gives:

b1 = cosπ · 1 = cosπ = −1
b2 = cosπ · 2 = cos 2π = 1
b3 = cosπ · 3 = cos 3π = −1
b4 = cosπ · 4 = cos 4π = 1

2. Calculate the first four terms of the sequence bn = 2 + (−1)n, starting with n = 1.
The first four terms of {bn} are obtained by setting n = 1, 2, 3, 4 in the formula for bn:

b1 = 2 + (−1)1 = 2− 1 = 1

b2 = 2 + (−1)2 = 2 + 1 = 3

b3 = 2 + (−1)3 = 2− 1 = 1

b4 = 2 + (−1)4 = 2 + 1 = 3

3. Use Theorem 2 to determine the limit of the sequence bn =
3n + 1

2n + 4
or state that the

sequence diverges.
Using Theorem 2 and the asymptotic behavior of rational functions we get:

lim
n→∞

3n + 1

2n + 4
= lim

x→∞

3x+ 1

2x+ 4
=

3

2

4. Use Theorem 2 to determine the limit of the sequence cn = 4(2n) or state that the
sequence diverges.

By Theorem 2,
lim
n→∞

4 · 2n = lim
x→∞

4 · 2x = ∞.

Thus, the sequence 4 (2n) diverges.

5. Determine the limit of the sequence yn =
en

2n
or show that the sequence diverges (justifying

each step using the appropriate Limit Laws or Theorems).
en

2n
=
(e

2

)n

and
e

2
> 1. By the Limit of Geometric Sequences, proved in Example 4,

we conclude that lim
n→∞

(e

2

)n

= ∞. Thus, the given sequence diverges to ∞.

6. Determine the limit of the sequence an =

√
n√

n + 4
or show that the sequence diverges

(justifying each step using the appropriate Limit Laws or Theorems).
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We compute the limit using Theorem 2:

lim
n→∞

√
n√

n+ 4
= lim

x→∞

√
x√

x+ 4
= lim

x→∞

√
x√
x√

x√
x
+ 4√

x

= lim
x→∞

1

1 + 4√
x

=
1

1 + 0
= 1

7. Determine the limit of the sequence bn = en
2−n or show that the sequence diverges

(justifying each step using the appropriate Limit Laws or Theorems).

Since lim
x→∞

(
x2 − x

)
= lim

x→∞
x2

(

1− 1

x

)

= ∞, and since the exponential function ex is

increasing, we have lim
x→∞

ex
2−x = ∞. Then, by Theorem 2 also lim

n→∞
en

2−n = ∞, that is,

the sequence en
2−n diverges.

8. Determine the limit of the sequence bn =
3− 4n

2 + 7 · 4n or show that the sequence diverges

(justifying each step using the appropriate Limit Laws or Theorems).
Dividing the numerator and denominator by 4n yields:

an =
3− 4n

2 + 7 · 4n =
3
4n

− 4n

4n

2
4n

+ 7·4n
4n

=
3
4n

− 1
2
4n

+ 7

We now compute the limit using Limit Laws for Sequences and the limit of the geometric

sequence (see Example 4) lim
n→∞

1

4n
= lim

n→∞

(
1

4

)n

= 0. We obtain:

lim
n→∞

an = lim
n→∞

3
4n

− 1
2
4n

+ 7
=

lim
n→∞

(
3
4n

− 1
)

lim
n→∞

(
2
4n

+ 7
) =

3 lim
n→∞

1
4n

− lim
n→∞

1

2 lim
n→∞

1
4n

− lim
n→∞

7

=
3 · 0− 1

2 · 0 + 7
= −1

7

9. Show that an =
3n2

n2 + 2
is strictly increasing. Find an upper bound.

We consider the function f (x) =
3x2

x2 + 2
. Differentiating f yields:

f ′ (x) =
6x (x2 + 2)− 3x2 · 2x

(x2 + 2)2
=

12x

(x2 + 2)2

f ′ (x) > 0 for x > 0, hence f is strictly increasing on this interval. It follows that
an = f (n) is also strictly increasing. Next, we show that M = 3 is an upper bound
for an by writing

an =
3n2

n2 + 2
≤ 3n2 + 6

n2 + 2
=

3 (n2 + 2)

n2 + 2
= 3.

That is, an ≤ 3 for all n.
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10.2. Summing an Infinite Series.

Class Time AB 0 periods; BC 2 periods. Essential.

Key Points

• An infinite series is an expression of the form

S =
∞∑

n=1

an = a1 + a2 + a3 + · · ·

We call an the general term of the series.
• The N th partial sum of an infinite series S is the finite sum:

SN =
N∑

n=1

an = a1 + a2 + · · ·+ aN

If lim
N→∞

SN exists, we say that S is convergent and S = lim
N→∞

SN . Otherwise, S is

divergent.

• A Divergence Test: If an does not approach 0, then
∞∑

n=1

an diverges. A series

though, may diverge even if an approaches 0.
• A Geometric series with common ratio r satisfying |r| < 1 converges:

∞∑

n=M

crN = crM + crM+1 + · · · = crM

1− r
=

first term

1− r
.

A geometric series diverges if the common ratio r ≥ 1.

Lecture Material

An infinite series is a sum of the form
∞∑

n=1

an. The nth partial sum is defined as SN =

N∑

n=1

an, and an infinite series is said to converge to S if lim
N→∞

SN = S, and is said to diverge

otherwise. Work Exercise 4 to ensure that students are familiar with these basic concepts.
Prove the Divergence Test (Theorem 3), which states that if an does not converge to 0,

then S =

∞∑

n=1

an diverges. Work Exercises 11 (a telescopic series) and 16. Now show the

students the trick to computing partial sums of geometric series to show that Theorem 1
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holds: A geometric series with common ratio r converges if |r| < 1 and diverges if |r| ≥ 1.
Furthermore: ∞∑

n=0

crn =
c

1− r
and

∞∑

n=M

crn =
crM

1− r
, |r| < 1

Also point out now that infinite series can be added, subtract, and multiplied by a
constant in the usual fashion provided that the series all converge (Theorem 2). Now
work Exercises 24, 32, and 38.

Discussion Topics/Class activities
Work Exercise 51, which gives a clever way of determining the derivative of f(x) = xN

that does not use the Binomial Theorem (54 and 55 are also interesting).

Suggested Problems
Exercises 1–5 odd (computational), 9, 11 (computational), 15, 17, 21, 23, 27, 31, 37, 41,
45 (computational)
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Worksheet 10.2.
Infinite Series

1. Compute the partial sums S2, S4, and S6 of
∞∑

k=1

(−1)kk−1.

2. Calculate S3, S4, and S5, and then find the sum of S =

∞∑

n=1

1

4n2 − 1
using the identity

1

4n2 − 1
=

1

2

(
1

2n− 1
− 1

2n+ 1

)

3. Use Theorem 3 to prove that the series cos
1

2
+ cos

1

3
+ cos

1

4
+ · · · diverges.
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4. Use the formula for the sum of a geometric series to find the sum 1 +
1

5
+

1

52
+

1

53
+ · · ·

or state that the series diverges.

5. Use the formula for the sum of a geometric series to find the sum

∞∑

i=0

7 · 3n
11n

or state that

the series diverges.

6. Use the formula for the sum of a geometric series to find the sum

∞∑

i=0

8 + 2n

5n
or state

that the series diverges.
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Solutions to Worksheet 10.2

1. Compute the partial sums S2, S4, and S6 of

∞∑

k=1

(−1)kk−1.

S2 = (−1)1 · 1−1 + (−1)2 · 2−1 = −1 +
1

2
= −1

2
S4 = (−1)1 · 1−1 + (−1)2 · 2−1 + (−1)3 · 3−1 + (−1)4 · 4−1

= S2 −
1

3
+

1

4
= −1

2
− 1

3
+

1

4
= − 7

12

S6 = S4 + a5 + a6 = − 7

12
+ (−1)5 · 5−1 + (−1)6 · 6−1

= − 7

12
− 1

5
+

1

6
= −37

60

2. Calculate S3, S4, and S5, and then find the sum of S =

∞∑

n=1

1

4n2 − 1
using the identity

1

4n2 − 1
=

1

2

(
1

2n− 1
− 1

2n+ 1

)

SN =

N∑

n=1

1

2

(
1

2n− 1
− 1

2n+ 1

)

=
1

2
− 1

2(2N + 1)
. Thus S3 =

3

7
, S4 =

4

9
, S5 =

5

11
and

S = lim
N→∞

SN =
1

2
.

3. Use Theorem 3 to prove that the series cos
1

2
+ cos

1

3
+ cos

1

4
+ · · · diverges.

The general term is an = cos
1

n + 1
. Since lim

n→∞
an = lim

n→∞
cos

1

n + 1
= cos

(

lim
n→∞

1

n + 1

)

= cos 0 = 1,

the general term does not converge to zero. Thus, Theorem 3 implies that the series di-
verges.

4. Use the formula for the sum of a geometric series to find the sum 1 +
1

5
+

1

52
+

1

53
+ · · ·

or state that the series diverges.
In summation notation we have:

1 +
1

5
+

1

52
+

1

53
+ ... =

∞∑

n=0

1 ·
(
1

5

)n

The common ratio is r =
1

5
, so |r| < 1. By the Theorem on the Sum of Geometric series,
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the series converges to the following sum:
∞∑

n=0

(
1

5

)n

=
1

1− 1
5

=
1
4
5

=
5

4

5. Use the formula for the sum of a geometric series to find the sum
∞∑

i=0

7 · 3n
11n

or state that

the series diverges.

The series

∞∑

n=0

7 · 3n
11n

=

∞∑

n=0

7

(
3

11

)n

is a geometric series with the common ratio r =
3

11

. Since |r| < 1, the series converges. We find the sum by setting a = 7, r =
3

11
in the

formula of Theorem 3. This gives:
∞∑

n=0

(
3

11

)n

=
7

1− 3
11

=
7
8
11

=
77

8
= 9

5

8

6. Use the formula for the sum of a geometric series to find the sum

∞∑

i=0

8 + 2n

5n
or state

that the series diverges. We rewrite the series as the sum of the following two geometric
series:∞∑

n=0

8 + 2n

5n
=

∞∑

n=0

8

5n
+

∞∑

n=0

2n

5n
=

∞∑

n=0

8 ·
(
1

5

)n

+
∞∑

n=0

(
2

5

)n

(1)

The common ratios of the series are r =
1

5
and r =

2

5
respectively, hence by the Theorem

on the sum of a geometric series, the series converges. For the first series, a = 8 and

r =
1

5
and for the second a = 1 and r =

2

5
. Hence the series converges to the following

sums:∞∑

n=0

8 ·
(
1

5

)n

=
8

1− 1
5

=
8
4
5

= 10

∞∑

n=0

(
2

5

)n

=
1

1− 2
5

=
1
3
5

=
5

3
= 1

2

3

Substituting these values in (1), we derive:
∞∑

n=0

8 + 2n

5n
= 10 + 1

2

3
= 11

2

3
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10.3. Convergence of Series with Positive Terms.

Class Time AB 0 periods; BC 2 periods. Essential.

Key Points

• The partial sums SN of a positive series S =
∞∑

n=1

an form an increasing sequence.

• Dichotomy Theorem: a positive series S =
∞∑

n=1

an converges if its partial sums SN

are bounded. Otherwise, S diverges to infinity.

• The Integral Test: If f is positive, decreasing, and continuous, then S =
∞∑

n=1

f(n)

converges (diverges) if

∫ ∞

M

f(x)dx converges (diverges) for some M > 0.

• p-Series: The series
∞∑

n=1

1

np
converges if p > 1 and diverges otherwise.

• The Comparison Test: Let 0 ≤ an ≤ bn. If
∞∑

n=1

bn converges, then
∞∑

n=1

an also

converges. If

∞∑

n=1

an diverges, then

∞∑

n=1

bn also diverges.

• Limit Comparison Test: Let an, bn ≥ 0 and assume that lim
n→∞

an
bn

exists and is

non-zero. Then

∞∑

n=1

bn converges if and only if

∞∑

n=1

an converges.

Lecture Material

All of the series

∞∑

n=1

an considered in the section are positive series. That is, an ≥ 0 for

all n. In terms of convergence, there are only two possible ways that a series can behave

(the Dichotomy Theorem 1). Let S =

∞∑

n=1

an be a positive series. If the partial sums

Sn are bounded above, then the S converges. If the partial sums Sn are not bounded
above, then S diverges to infinity. We now consider convergence tests, one of the most
important of which is the Integral Test (Theorem 2). Let an = f(n) where f(x) is

positive, decreasing, and continuous for x ≥ 1. If

∫ ∞

1

f(x)dx converges, then

∞∑

i=1

an
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converges. Also, if

∫ ∞

1

f(x)dx diverges, then
∞∑

n=1

an diverges. The Integral Test can be

justified graphically as in Figures 2 and 3. Work Exercise 10 to illustrate the use of the
Integral Test. Work Example 1 and discuss the harmonic series. Now point out that
the Integral Test can be used to determine the convergence of p-series, and obtain the

following result (Theorem 3): The infinite series
∞∑

n=1

1

np
converges if p > 1 and diverges

otherwise. Next, state the Comparison Test: Assume that there exists M > 0 such that

an ≥ bn ≥ 0 for all n ≥ M . If
∞∑

n=1

an converges, then
∞∑

n=1

bn converges, while if
∞∑

n=1

bn

diverges, then
∞∑

n=1

an also diverges. Work Exercises 20 and 28 to illustrate the use of the

Comparison Test. The final convergence test of this section is the Limit Comparison Test

which states that if an and bn are positive sequences such that lim
n→∞

an
bn

= L 6= 0, then

∞∑

n=1

an converges if and only if

∞∑

n=1

bn converges. Work Exercises 40 and 44 to illustrate

the use of the Limit Comparison Test.

Discussion Topics/Class activities
Solve Exercise 89.

Selected Problems
Exercises 1–31 every other odd, 39, 43, 47, 49–77 (mixed review of all methods)
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Worksheet 10.3.
Convergence of Series with Positive Terms

1. Use the Integral Test to determine if the infinite series

∞∑

n=2

1

n(lnn)2
is convergent.

2. Use the Comparison Test to determine if the infinite series

∞∑

n=1

1√
n+ 2n

is convergent.

3. Use the Comparison Test to determine if the infinite series
∞∑

n=1

2

3n + 3−n
is convergent.
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4. Use the Limit Comparison Test to determine the convergence or divergence of the infinite

series

∞∑

n=2

n2

n4 − 1
.

5. Use the Limit Comparison Test to determine the convergence or divergence of the infinite

series

∞∑

n=2

n√
n3 − 1

.
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Solutions to Worksheet 10.3

1. Use the Integral Test to determine if the infinite series
∞∑

n=2

1

n(lnn)2
is convergent.

We use the Integral Test with f (x) =
1

x(ln x)2
. f is positive and continuous for x ≥ 2.

We show that f is decreasing in this interval. Differentiating f gives:

f ′ (x) = − 1
(
x(ln x)2

)2

(
x(ln x)2

)′

= − 1

x2(ln x)4

(

1 · (ln x)2 + x · 2 (ln x) · 1
x

)

= − 1

x2(ln x)4
(
(ln x)2 + 2 lnx

)

Since ln x > 0 for x > 1, f ′ (x) is negative for x > 1, hence f is decreasing for x ≥ 2. We

compute the improper integral

∞∫

2

1

x(ln x)2
dx making the substitution u = ln x, du =

1

x
dx.

We obtain:

∞∫

2

1

x(ln x)2
dx = lim

R→∞

R∫

2

1

x(ln x)2
dx = lim

R→∞

lnR∫

ln 2

1

u2
du = lim

R→∞
− 1

u
|lnR
ln 2

= − lim
R→∞

(
1

lnR
− 1

ln 2

)

= −
(

0− 1

ln 2

)

=
1

ln 2

The integral converges, hence the given series also converges.

2. Use the Comparison Test to determine if the infinite series

∞∑

n=1

1√
n+ 2n

is convergent.

For n ≥ 1 we have:
1√

n + 2n
≤ 1

2n
=

(
1

2

)n

(1)

The series
∞∑

n=1

(
1

2

)n

converges since it is a geometric series with r =
1

2
. The Comparison

Test and inequality (1) imply that the series
∞∑

n=1

1√
n+ 2n

also converges.
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3. Use the Comparison Test to determine if the infinite series
∞∑

n=1

2

3n + 3−n
is convergent.

Since 3−n > 0 for all n, we have:
2

3n + 3−n
≤ 2

3n
= 2 ·

(
1

3

)n

(1)

The series

∞∑

n=1

(
1

3

)n

is a geometric series with r =
1

3
, hence it converges. Thus, by

Linearity of Infinite Series, the series

∞∑

n=1

2 ·
(
1

3

)n

= 2

∞∑

n=1

(
1

3

)n

converges. Inequality

(1) and the Comparison Theorem imply that the series

∞∑

n=1

2

3n + 3−n
converges.

4. Use the Limit Comparison Test to determine the convergence or divergence of the infinite

series

∞∑

n=2

n2

n4 − 1
.

Let an =
n2

n4 − 1
. Since for large n,

n2

n4 − 1
≈ n2

n4
=

1

n2
, we apply the Limit Comparison

Test with bn =
1

n2
:

an
bn

=
n2

n4−1
1
n2

=
n4

n4 − 1
We compute the following limit:

lim
n→∞

an
bn

= lim
n→∞

n4

n4 − 1
= lim

n→∞

n4

n4

n4

n4 − 1
n4

= lim
n→∞

1

1− 1
n4

=
1

1− 0
= 1 6= 0

The series

∞∑

n=1

1

n2
is a convergent p-series, hence

∞∑

n=2

1

n2
also converges. The Limit Com-

parison Test implies that the series

∞∑

n=2

n2

n4 − 1
converges.

5. Use the Limit Comparison Test to determine the convergence or divergence of the infinite

series

∞∑

n=2

n√
n3 − 1

. Let an =
n√

n3 − 1
. We observe that for large n,

n√
n3 − 1

≈ n√
n3

=
1√
n2

.

Therefore, we apply the Limit Comparison test with bn =
1√
n
.



434

We compute the quotient
an
bn

:

an
bn

=

n√
n3−1
1√
n

=
n
√
n√

n3 − 1
=

√

n3

n3 − 1

We now compute the limit:

lim
n→∞

an
bn

= lim
n→∞

√

n3

n3 − 1
= lim

n→∞

√

1

1− 1
n3

=

√

1

1− 0
= 1 6= 0

The series

∞∑

n=1

1√
n

is a divergent p-series, hence

∞∑

n=2

1√
n

also diverges. The Limit Com-

parison Test implies the series

∞∑

n=2

n√
n3 − 1

diverges.



435

10.4. Absolute and Conditional Convergence.

Class Time AB 0 periods; BC 1 period. Essential.

Key Points

• An infinite series

∞∑

n=1

an is absolutely convergent if the series

∞∑

n=1

|an| converges.

• Theorem: If

∞∑

n=1

|an| converges, then
∞∑

n=1

an also converges.

•
∞∑

n=1

an is conditionally convergent if it converges but is not absolutely convergent.

• Alternating Series Test (also known as the Leibniz Test): If an is a positive

sequence such that lim
n→∞

an = 0, then the alternating series S =

∞∑

n=1

(−1)n+1an

converges with 0 ≤ S ≤ a1, and the partial sums satisfy S2N ≤ S ≤ S2N+1.
• The absolute value of the error in using N terms to approximate an alternating
series is less than the absolute value of the first omitted term.

• We have two ways to analyze non-positive series: either show absolute convergence
or use the Alternating Series Test, if applicable.

Lecture Material

A series

∞∑

n=1

an is absolutely convergent if

∞∑

n=1

|an| converges. The following theorem is

not difficult to see: If

∞∑

n=1

an is absolutely convergent, then

∞∑

n=1

an converges. A series

∞∑

n=1

an is conditionally convergent if it is convergent but not absolutely convergent. An

alternating series, that is, a series

∞∑

n=1

an where the terms alternate in sign, may be

conditionally convergent. We have the following test (Alternating Series Test): Let an be
a non-increasing positive series such that lim

n→∞
an = 0 (so a1 ≥ a2 ≥ · · · ≥ 0). Then the

alternating series S =

∞∑

n=1

(−1)n+1an = a1 − a2 + a3 − a4 + · · · converges. Furthermore,

0 ≤ S ≤ a1 and S2N ≤ S ≤ S2N+1 for all N . Now work Exercises 2, 4, and 6.
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The Alternating Series Test gives information about the error involved when approx-
imating an alternating series with a partial sum. This leads to Theorem 3 which is
illustrated by Example 5.

Discussion Topics/Class activities
Show your class the solution to Exercise 34.

Selected Problems
Exercises 1–9 odd (computational), 17–31 odd (computational)
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Worksheet 10.4.
Absolute and Conditional Convergence

1. Show that the following series converges conditionally:

∞∑

n=1

(−1)n−1 1

n2/3
=

1

12/3
− 1

22/3
+

1

32/3
− 1

42/3
+ · · ·

2. Determine if the series

∞∑

n=1

(−1)nn4

n3 + 1
converges absolutely, conditionally, or not at all.

3. Determine if the series

∞∑

n=1

sinn

n2
converges absolutely, conditionally, or not at all.
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Solutions to Worksheet 10.4

1. Show that
∞∑

n=1

(−1)n−1 n

n2 + 1
=

1

3
− 2

5
+

3

10
− 4

17
+

5

16
− ... converges conditionally.

We first show that the series converges, using Leibniz Test for Alternating Series.

The terms an =
n

n2 + 1
tend to zero since lim

n→∞

n

n2 + 1
= lim

n→∞

1
n

1 + 1
n2

= 0. We show that

an forms a decreasing sequence, by showing that the function f (x) =
x

x2 + 1
is decreasing

on x ≥ 1. We differentiate f :

f ′ (x) =
1 · (x2 + 1)− x · 2x

(x2 + 1)2
=

1− x2

(x2 + 1)2

We see that f ′ (x) < 0 for x > 1, so f is decreasing for x > 1. By the continuity at x = 1,
we conclude that f is decreasing on x ≥ 1. This implies that the sequence {an} is de-
creasing , that is:
a1 ≥ a2 ≥ a3 ≥ ...
We now apply Leibniz Test to conclude that the given alternating series converges.

To prove conditional convergence, we must show that the positive series

∞∑

n=1

n

n2 + 1
di-

verges. We do so using the Limit Comparison Test, with the divergent harmonic series
∞∑

n=1

1

n
. This gives:

lim
n→∞

n
n2+1
1
n

= lim
n→∞

n2

n2 + 1
= lim

n→∞

1

1 + 1
n2

=
1

1 + 0
= 1 6= 0

Thus, the positive series
∞∑

n=1

n

n2 + 1
also diverges.

Since the given series converges but diverges absolutely, this series converges condition-
ally.

2. Determine if the series

∞∑

n=1

(−1)nn4

n3 + 1
converges absolutely, conditionally, or not at all.

We compute the limit:

lim
n→∞

n4

n3 + 1
= lim

n→∞

n

1 + 1
n3

= ∞

It follows that the general term
(−1)nn4

n3 + 1
of the series does not tend to zero, hence this

series diverges by the Divergence Test.
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3. Determine if the series
∞∑

n=1

sinn

n2
converges absolutely, conditionally, or not at all.

The positive series is
∞∑

n=1

| sinn|
n2

. Since
| sinn|
n2

≤ 1

n2
for n ≥ 1, the Comparison Test

and the convergence of the p-series

∞∑

n=1

1

n2
imply that the series

∞∑

n=1

| sinn|
n2

converges.

Hence, the given series is absolutely convergent.
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10.5. The Ratio and Root Tests.

Class Time AB 0 periods; BC 1 period. Essential.

Key Points

• The Ratio Test: Assume the limit ρ = lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
exists. Then

∞∑

n=1

an converges

absolutely if ρ < 1, and diverges if ρ > 1. If ρ = 1, the test is inconclusive.

• The Root Test: Assume the limit L = lim
n→∞

n
√
an exists. Then

∞∑

n=1

converges if

L < 1 and diverges if L > 1. If L = 1, then the test is inconclusive.

Lecture Material

First introduce the Ratio Test (Theorem 1) which states that if the limit ρ = lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣

exists, then

(1) If ρ < 1, then

∞∑

n=1

an converges absolutely.

(2) If ρ > 1, then

∞∑

n=1

an diverges.

(3) If ρ = 1, the test is inconclusive, so the series may converge or diverge.

Work Exercises 2, 4, and 6 to illustrate the use of the Ratio Test. Now introduce the
Root Test (Theorem 2), which states that if the limit L = lim

n→∞
n
√
an exists, then

(1) If L < 1, then
∞∑

n=1

an converges absolutely.

(2) If L > 1, then
∞∑

n=1

an diverges.

(3) If L = 1, the test is inconclusive, so the series may converge or diverge.

Work Exercises 36, 38, and 40 to illustrate the use of the Root Test.

Discussion Topics/Class activities
Work Exercise 57, which gives a proof of the Root Test.

Selected Problems
Exercises 1–17 odd (computational), 35–51 odd (computational)
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Worksheet 10.5.
The Ratio and Root Tests

1. Apply the Ratio Test to determine the convergence or divergence of
∞∑

n=1

(−1)n−1n

5n
, or

state that the Ratio Test is inconclusive.

2. Apply the Ratio Test to determine the convergence or divergence of
∞∑

n=1

3n+ 2

5n3 + 1
, or state

that the Ratio Test is inconclusive.

3. Apply the Ratio Test to determine the convergence or divergence of

∞∑

n=1

2n

n
, or state that

the Ratio Test is inconclusive.
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4. Use the Root Test to determine the convergence or divergence of
∞∑

n=0

1

10n
, or state that

the Root Test is inconclusive.

5. Use the Root Test to determine the convergence or divergence of
∞∑

n=0

(
k

k + 10

)k

, or state

that the Root Test is inconclusive.

6. Prove that

∞∑

n=1

2n
2

n!
diverges. Hint: Use that 2n

2

= (2n)n and n! ≤ nn.
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Solutions to Worksheet 10.5

1. Apply the Ratio Test to determine the convergence or divergence of
∞∑

n=1

(−1)n−1n

5n
, or

state that the Ratio Test is inconclusive.

Let an =
(−1)n−1n

5n
. Then, |an| =

n

5n
and |an+1| =

n+ 1

5n+1
so we have:

|an+1

an
| =

n+1
5n+1

n
5n

=
5n

5n+1
· n + 1

n
=

n+ 1

5n

ρ = lim
n→∞

|an+1

an
| = lim

n→∞

n + 1

5n
= lim

n→∞

1 + 1
n

5
=

1

5
Since ρ < 1, the series converges absolutely.

2. Apply the Ratio Test to determine the convergence or divergence of
∞∑

n=1

3n+ 2

5n3 + 1
, or state

that the Ratio Test is inconclusive.

In this series, an =
3n+ 2

5n3 + 1
and an+1 =

3 (n + 1) + 2

5(n + 1)3 + 1
=

3n+ 5

5(n + 1)3 + 1
. Hence,

an+1

an
=

3n+ 5

5(n + 1)3 + 1
· 5n

3 + 1

3n+ 2
=

3n+ 5

3n+ 2
· 5n3 + 1

5(n+ 1)3 + 1

lim
n→∞

an+1

an
= lim

n→∞

(

3 + 5
n

3 + 2
n

· 5 + 1
n3

5
(
1 + 1

n

)3
+ 1

n3

)

= 1 · 1 = 1

In this case ρ = 1 so the Ratio Test is inconclusive.
Notice that the series converges by the Limit Comparison Test if we compare it with the

series

∞∑

n=1

1

n2
.

3. Apply the Ratio Test to determine the convergence or divergence of

∞∑

n=1

2n

n
, or state that

the Ratio Test is inconclusive.

In this series an =
2n

n
, an+1 =

2n+1

n + 1
. Hence,

an+1

an
=

2n+1

n+1
2n

n

=
2n+1

2n
· n

n+ 1
=

2n

n + 1

ρ = lim
n→∞

an+1

an
= lim

n→∞

2n

n+ 1
= 2

Since, ρ > 1, the series diverges.
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4. Use the Root Test to determine the convergence or divergence of
∞∑

n=0

1

10n
, or state that

the Root Test is inconclusive.

Let an =
1

10n
. Then n

√
an =

n

√

1

10n
=

1

10
, hence lim

n→∞
n
√
an =

1

10
.

Since the limit is less than 1, the series converges by the Root Test.

5. Use the Root Test to determine the convergence or divergence of
∞∑

n=0

(
k

k + 10

)k

, or state

that the Root Test is inconclusive.

In this series ak =

(
k

k + 10

)k

. Hence,

L = lim
k→∞

k
√
ak = lim

k→∞
k

√
(

k

k + 10

)k

= lim
k→∞

k

k + 10
= lim

k→∞

1

1 + 10
k

= 1

Since L = 1, the Root Test is inconclusive.

6. Prove that

∞∑

n=1

2n
2

n!
diverges. Hint: Use that 2n

2

= (2n)n and n! ≤ nn. Since n! ≤ nn, we

have:
2n

2

n!
≥ 2n

2

nn
(1)

We now show that the series

∞∑

n=1

2n
2

nn
diverges. We compute the following limit:

L = lim
n→∞

n

√

2n2

nn
= lim

n→∞
n

√
(
2n

n

)n

= lim
n→∞

2n

n
We compute the resulting limit using the Limit of Sequence Defined by a Function and
L’Hopital’s Rule. This gives:

L = lim
n→∞

2n

n
= lim

x→∞

2x

x
= lim

x→∞

2x ln 2

1
= ∞

Thus, the Root Test implies that the series

∞∑

n=1

2n
2

nn
diverges.

We now apply the Comparison Test and inequality (1) to conclude that the series
∞∑

n=1

2n
2

n!

also diverges.
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10.6. Power Series.

Class Time AB 0 periods; BC 2 periods. Essential.

Key Points

• A power series is an infinite series of the form F (x) =
∞∑

n=0

an(x− c)n. We refer to

c as the center of F (x).
• A power series has three possible types of convergence behavior:

(1) F (x) converges only for x = c, or
(2) F (x) converges for all x, or
(3) There exists R > 0 such that F (x) converges absolutely for |x− c| < R and

diverges for |x− c| > R.
R is the radius of convergence of F (x). Convergence at the endpoints c±R must
be checked separately. If Case (1) occurs, we set R = 0 and if (2) occurs, we set
R = ∞.

• If r = lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
exists, then R = r−1 with the conventions that R = 0 if r = ∞

and R = ∞ if r = 0.
• The power series F (x) is differentiable on (c−R, c+R), and can be differentiated
and integrated term by term on the interval (c− R, c+R). In particular,

F ′(x) =

∞∑

n=1

nanx
n−1 and

∫

F (x)dx = a+

∞∑

n=0

an
n+ 1

xn+1

where a is an arbitrary constant.

• The power series expansion
1

1− x
=

∞∑

n=0

xn is valid for |x| < 1, and is useful

for deriving expansions of other related functions by substitution, integration, or
differentiation.

Lecture Material
A power series centered at the point c is an infinite series of the form

F (x) =

∞∑

n=0

an(x− c)n.

In terms of convergence, the primary question is for what values of x does F (x) converge?
Clearly F (x) always converges for x = c. Now discuss Theorem 1, which gives the three

possibilities for the convergence of F (x): Let F (x) =
∞∑

n=0

an(x− c)n. Then
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(1) F (x) converges only for x = c, or
(2) F (x) converges for all x, or
(3) There is a number 0 < R < ∞ such that F (x) converges absolutely if |x− c| < R

and diverges if |x − c| > R. F (x) may or may not converge at the endpoints
|x− c| = R.

If (1) occurs, set R = 0, and in case (2), set R = ∞. We say that R is the radius
of convergence of F (x). Note that the endpoints of the interval must be considered
separately. A useful tool for finding R is the following form of the Ratio Test: Let

F (x) =

∞∑

n=0

an(x − c)n, and assume that r = lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
. Then F (x) has radius of

convergence R = r−1 (R = ∞ if r = 0 and R = 0 if r = ∞). Work Exercise 3, which will
not only give practice at using the Ratio Test, but will also demonstrate the different
behaviors occur at the endpoints. An important power series is the geometric series. As
∞∑

n=0

rn =
1

1− r
if |r| < 1, by substituting x for r we have that

1

1− x
=

∞∑

n=0

xn, |x| < 1.

Other functions can be represented as a power series using this formula. Work Exercise
40 to illustrate this. Differentiation and integration of power series can be done term by

term in the interval of convergence (Theorem 2): If F (x) =

∞∑

n=0

(x − c)n has radius of

convergence R > 0, then F (x) is differentiable on (c− R, c + R), and its derivative and
antiderivative may be computed term by term. Precisely, if c− R < x < c+R, then

F ′(x) =
∞∑

n=1

nan(x− c)n−1, and

∫

F (x)dx = A+

∞∑

n=0

an
n + 1

(x− c)n+1, where A is a constant.

Discussion Topics/Class activities
Work Exercise 66, which shows that a power series is continuous in its interval of con-
vergence.

Selected Problems
Exercises 1, 3 (computational), 7 – 25 every other odd (computational), 35, 37, 39
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Worksheet 10.6.
Power Series

1. Show that the following three power series have the same radius of convergence. Then
show that (a) diverges at both endpoints, (b) converges at one endpoint but diverges at
the other, and (c) converges at both endpoints.

(a)
∞∑

n=1

(x− 5)n

9n
(b)

∞∑

n=1

(x− 5)n

n9n
(c)

∞∑

n=1

(x− 5)n

n29n

2. Use the formula for geometric series to expand the function
1

1 + 3x
in a power series with

center c = 0 and determine the set of x for which the expansion is valid.
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Solutions to Worksheet 10.6

1. Show that the following three power series have the same radius of convergence. Then
show that (a) diverges at both endpoints, (b) converges at one endpoint but diverges at
the other, and (c) converges at both endpoints.

(a)
∞∑

n=1

(x− 5)n

9n
(b)

∞∑

n=1

(x− 5)n

n9n
(c)

∞∑

n=1

(x− 5)n

n29n

Series (a): an =
1

9n
. Hence,

r = lim
n→∞

|an+1

an
| = lim

n→∞
|

1
9n+1

1
9n

| = lim
n→∞

9n

9n+1
=

1

9

The radius of convergence is, thus, R = r−1 = 9

Series (b):an =
1

n · 9n .
Hence,

r = lim
n→∞

|an+1

an
| = lim

n→∞
|

1
(n+1)9n+1

1
n
· 9n |

= lim
n→∞

(
n

n+ 1
· 9n

9n+1

)

= lim
n→∞

(
1

9
· n

n+ 1

)

=
1

9
The radius of convergence is, thus, R = r−1 = 9

Series (c):an =
1

n2 · 9n .
Hence,

r = lim
n→∞

|an+1

an
| = lim

n→∞
|

1
(n+1)29n+1

1
n2·9n

|

= lim
n→∞

(
n2

(n+ 1)2
· 9n

9n+1

)

= lim
n→∞

(

1

9
·
(

n

n+ 1

)2
)

=
1

9

The radius of convergence is, thus, R = r−1 = 9.
We see that the three series have the same radius of convergence R = 9. The interval of
convergence is |x− 5| < 9, that is (−4, 14). We check the convergence of each series at
the endpoints x = 14 and x = −4.

Series (a):
∞∑

n=1

(x− 5)n

9n

For x = 14, the series
∞∑

n=1

(14− 5)n

9n
=

∞∑

n=1

1 diverges by the Divergence Test.
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For x = −4, the series
∞∑

n=1

(−4− 5)n

9n
=

∞∑

n=1

(−1)

n

diverges by this test.

Series (b):
∞∑

n=1

(x− 5)5

n · 9n

For x = 14, the series
∞∑

n=1

(14− 5)n

n · 9n =
∞∑

n=1

1

n
is the divergent harmonic series.

For x = −4, the series
∞∑

n=1

(−4− 5)n

n · 9n =
∞∑

n=1

(−1)n

n
converges conditionaly by Leibniz Test.

Series (c):
∞∑

n=1

(x− 5)n

n2 · 9n

For x = 14, the series
∞∑

n=1

(14− 5)n

n2 · 9n =
∞∑

n=1

1

n2
is a convergent p-series.

For x = −4, the series
∞∑

n=1

(−4 − 5)n

n2 · 9n =
∞∑

n=1

(−1)n

n2
converges abolutely, since its associ-

ated positive series is

∞∑

n=1

1

n2
which is a convergent p-series.
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2. Use the formula for geometric series to expand the function
1

1 + 3x
in a power series with

center c = 0 and determine the set of x for which the expansion is valid.
The formula for geometric series implies that:
1

1− x
=

∞∑

n=0

xn for |x| < 1

We replace x by (−3x), to obtain the following expansion:

1

1 + 3x
=

∞∑

n=0

(−3x)n =

∞∑

n=0

(−1)n · 3nxn

This expansion is valid for | − 3x| < 1, or |x| < 1

3
.

For x =
1

3
the series diverges by the Divergence Test.
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10.7. Taylor Series.

Class Time AB 0 periods; BC 2 periods. Essential.

Key Points

• The Taylor series of f(x) centered at x = c is

T (x) =
∞∑

n=0

f (n)(c)

n!
(x− c)n

The partial sum TN(x) of T (x) is the N th Taylor polynomial.

• If f(x) has an expansion

∞∑

n=0

an(x−c)n as a power series on an interval (c−R, c+R)

with R > 0, then this power series is the Taylor series centered at x = c.
• When c = 0, T (x) is the MacLaurin Series of f(x).
• The equality f(x) = T (x) holds if and only if the remainder, defined as RN(x) =
f(x)− TN (x), tends to 0 as N → ∞.

• Suppose f(x) is infinitely differentiable on an interval I = (c − R, c + R) with
R > 0 and assume there exists M > 0 such that |f (k)(x)| < M for x ∈ I. Then
f(x) is represented by its Taylor series. That is, f(x) = T (x) for x ∈ I.

• When determining a Taylor series of a function, it is often useful to start with
known Taylor series and apply one of the operations multiplication, substitution,
differentiation, or integration.

Lecture Material
Begin by deriving the formula for the Taylor Series of f(x) centered at x = c, which is
given by

f(x) =
∞∑

n=0

f (n)(c)

n!
(x− c)n.

In the special case when c = 0, the Taylor series is also known as the MacLaurin series,
and is given by

f(x) =
∞∑

n=0

f (n)(0)

n!
xn.

Also point out that the power series expansion is unique if the radius of convergence is
positive (Theorem 1): If f(x) is represented by a power series F (x) centered at c on an
interval (c − R, c + R) with R > 0, then F (x) is the Taylor series of f(x) centered at
x = c. Work Exercise 2 to ensure that the students are familiar with these ideas. The
previous result tells us that if we wish to represent a function as a power series, the Taylor
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series is the only way in which this can be done. However, there is no guarantee that the
Taylor series converges. We do, though, have the following result (Theorem 2): Let f(x)
be infinitely differentiable on I = (c−R, c+R) with R > 0. Assume there is a constant
M such that for all k ≥ 0, |f (k)(x)| ≤ M for all x ∈ I. Then f(x) is represented by its

Taylor series on I: f(x) =

∞∑

n=0

an(x − c)n for all x ∈ I. Now point out that a Taylor

series is a power series and thus it can be differentiated and integrated term by term
within its interval of convergence, and two Taylor series may be multiplied or one may
be substituted into another. Work Exercises 4, 5, and 16 to illustrate the latter ideas
(as well as to ensure the students are comfortable with the MacLaurin series of some
common functions such as ex and sin x). Then work Exercises 32 and 38 (on finding
Taylor series). Now point out that Taylor series yield a generalization of the Binomial
Theorem. Namely Theorem 3, which states: For any exponent a, the Taylor expansion
of (1 + x)a is valid for |x| < 1:

(1 + x)a = 1 + ax+
a(a− 1)

2!
x2 +

a(a− 1)(a− 2)

3!
x3 + · · ·+

(
a

n

)

xn + · · ·

Now work Exercise 24.
For the AP exam students should memorize the Maclaurin series for ex, sin(x), cos(x)

and
1

1− x
(p. 599).

Graph a function and its first few Taylor polynomials to show the interval of conver-
gence (ln(x) and sin(x) are good examples).

Discussion Topics/Class activities
Exercise 91 is an interesting application of power series to show that e is irrational.

Selected Problems
Exercises 1, 3, 5, 7, 15, 19, 23, 29, 33, 35, 49, 53, 63, 65
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Worksheet 10.7.
Taylor Series

1. Write out the first 4 terms of the Taylor series of f(x) centered at c = 3 if

f(3) = 1 f ′(3) = 2 f ′′(3) = 12 f ′′′(3) = 3

2. Find the MacLaurin series of f(x) = sin(2x).

3. Find the MacLaurin series of f(x) = e4x.
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4. Find the MacLaurin series of f(x) = x2ex
2

.

5. Find the Taylor series of
√
x centered at c = 4.

6. Find the Taylor series of
1

1− 4x
centered at c = −2.

7. Write out the first 5 terms of the binormial series for f(x) = (1 + x)1/3.
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Solutions to Worksheet 10.7

1. Write out the first 4 terms of the Taylor series of f(x) centered at c = 3 if

f(3) = 1 f ′(3) = 2 f ′′(3) = 12 f ′′′(3) = 3

The first 4 terms of the Taylor series are:

f (x) = f (3) + f ′ (3) (x− 3) +
f ′′ (3)

2!
(x− 3)2 +

f ′′′ (3)

3!
(x− 3)3 + ...

= 1 + 2 (x− 3) +
12

2!
(x− 3)2 +

3

3!
(x− 3)3 + ...

= 1 + 2 (x− 3) + 6(x− 3)2 +
1

2
(x− 3)3 + ...

2. Find the MacLaurin series of f(x) = sin(2x).
Replacing x by 2x in the MacLaurin series for sin x gives:

sin x =

∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
, for all x

sin 2x =
∞∑

n=0

(−1)n
(2x)2n+1

(2n+ 1)!
=

∞∑

n=0

(−1)n22n+1x
2n+1

(2n+ 1)!
, for all x

3. Find the MacLaurin series of f(x) = e4x.
We substitute 4x in the MacLaurin series for ex, obtaining:

ex =
∞∑

n=0

xn

n!
, for all x

e4x =

∞∑

n=0

(4x)n

n!
=

∞∑

n=0

4nxn

n!
, for all x

4. Find the MacLaurin series of f(x) = x2ex
2

.
We first substitute x2 in the series for ex:

ex =

∞∑

n=0

xn

n!
for all x

ex
2

=

∞∑

n=0

(x2)
n

n!
=

∞∑

n=0

x2n

n!

We now multiply by x2 to obtain:

x2ex
2

= x2
∞∑

n=0

x2n

n!
=

∞∑

n=0

x2n+2

n!

5. Find the Taylor series of
√
x centered at c = 4.
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We rewrite the function in the form
√
x =

√

4 + (x− 4) =

√

4

(

1 +
x− 4

4

)

= 2

√

1 +
x− 4

4
(1)

We find the MacLaurin series of
√
1 + x by setting a =

1

2
in the Binomial series:

√
1 + x = 1 +

∞∑

n=1

(
1

2
n

)

xn , for |x| < 1

Replacing x by
x− 4

4
we obtain for |x− 4

4
| < 1 or |x− 4| < 4:

√

1 +
x− 4

4
= 1 +

∞∑

n=1

(
1

2
n

)(
x− 4

4

)n

= 1 +

∞∑

n=1

(
1

2
n

)

· 1

4n
(x− 4)n

(2)

Combining (1) and (2) yields:

√
x = 2 +

∞∑

n=1

(
1

2
n

)

· 2

4n
(x− 4)n (3)

We compute the coefficients in this series for n ≥ 1 we get:

(
1

2
n

)

· 2

4n
=

n factors
︷ ︸︸ ︷

1

2

(
1

2
− 1

)

· ... ·
(
1

2
− (n− 1)

)

·2

n! · 4n

=
1·

n−1 factors
︷ ︸︸ ︷

(1− 2) (1− 4) · ... · (1− 2n+ 2) ·2
n! · 2n · 4n

=
1 (1− 2) (1− 4) ... (1− 2n+ 2) · 2

n! · 2n · 4n

=
(−1)n−1 · (1 · 3 · 5 · ... · (2n− 3))

n! · 2n−1 · 4n

=
(−1)n−1 · (1 · 3 · 5 · ... · (2n− 3)) (2 · 4 · 6 · ... · (2n− 2))

n!2n−1 · 4n · (2 · 4 · 6 · ... · (2n− 2))

=
(−1)n−1 · (2n− 2)!

n!2n−1 · 4n · 2n−1 (1 · 2 · 3 · ... · (n− 1))

=
(−1)n−1 (2n− 2)! · n

24n−2 · (n!)2
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√
x = 2 +

∞∑

n=1

(−1)n−1 (2n− 2)! · n
24n−2(n!)2

(x− 4)n

6. Find the Taylor series of
1

3x− 2
centered at c = −2.

We rewrite the following as follows:
1

3x− 2
=

1

−5 + 3 (x+ 1)
=

1

−5
(

1− 3(x+1)
5

) = −1

5

1

1− 3(x+1)
5

We replace x by
3 (x+ 1)

5
in the MacLaurin series for

1

1− x
. We get for |3 (x+ 1)

5
| < 1

or |x+ 1| < 5

3
:

1

3x− 2
= −1

5

∞∑

n=0

(
3 (x+ 1)

5

)n

= −1

5

∞∑

n=0

3n

5n
(x+ 1)n

= −
∞∑

n=0

3n

5n+1
(x+ 1)n

Thus,
1

3x− 2
= −

∞∑

n=0

3n

5n+1
(x+ 1)n , for |x+ 1| < 5

3
.

7. Write out the first four terms of the binomial series for f(x) = (1 + x)1/3.

Using the formula for the binomial series with a =
1

3
, we obtain the following first four

terms:

1 +
x

3
+

x2

9
+

x3

81
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Chapter 10 AP Problems

No calculator allowed.

1. Which of the following sequences is/are not bounded?

I. an =
√
2n−

√
n+ 1

II. bn = 2− 5

n

III. cn = 2 sin(πn2)

A. I only

B. I and II only

C. II only

D. II and III only

E. I, II and III

2. Consider the series defined by Sk =

k∑

n=1

1

n2 + 3n+ 2
.

a. Evaluate S2 and S3.

b. Using the method of partial fractions, rewrite the expression
1

n2 + 3n+ 2
as a sum/difference

of two fractions.
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c. Using the result of part (b), evaluate S =
∞∑

n=1

1

n2 + 3n+ 2
.

3. Which of the following series converges?

I.
∞∑

n=1

1

n+ 2
√
n

II.

∞∑

n=2

n√
n5 − 1

III.

∞∑

n=1

lnn

n2

A. I and II only

B. II and III only

C. I and III only

D. II only

E. III only
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4. Which of the following series converges absolutely?

I.

∞∑

n=1

(−1)n+1

1.1n

II.
∞∑

n=1

(−1)n

n cos(πn)

III.
∞∑

n=1

(−1)n

2n + .5n

A. I only

B. II only

C. III only

D. I and II only

E. I and III only

5. For which of the following series is the Ratio Test inconclusive?

A.
∞∑

n=1

1

n!

B.

∞∑

n=1

2n

n2

C.

∞∑

n=1

3n

2n3 + 1

D.

∞∑

n=1

n!

n3

E.
∞∑

n=1

en

(n− 1)!
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6. Consider the function F defined by the power series
∞∑

n=0

(−1)n · xn.

a. Write the first three nonzero terms and the general term for F (x2).

b. Determine the interval of convergence of F (x2). Show the work that leads to your
answer.

c. Given that F (x2) =
1

a+ bxc
, find the values of a, b, and c.

d. Evaluate the improper integral

∫ ∞

0

F (x2) dx. Show the work that leads to your con-

clusion.

7. In the Maclaurin series expansion of f(x) = 8(x+ 4)3/2, what is the coefficient of the x3

term?

A. −3

B. −3

8

C. − 1

16

D.
3

8

E.
3

2
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Solutions to Chapter 10 AP Problems

1. Which of the following sequences is/are not bounded?

I. an =
√
2n−

√
n+ 1

II. bn = 2− 5

n

III. cn = 2 sin(πn2)

A. I only

B. I and II only

C. II only

D. II and III only

E. I, II and III

A [THIS PROBLEM CORRESPONDS WITH SECTION 10.1]

2. Consider the series defined by Sk =

k∑

n=1

1

n2 + 3n+ 2
.

a. Evaluate S2 and S3.

S2 =
1

4
; S3 =

3

10

b. Using the method of partial fractions, rewrite the expression
1

n2 + 3n + 2
as a sum (or

difference) of two fractions.

1

n+ 1
− 1

n + 2
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c. Using the result of part (b), evaluate S =
∞∑

n=1

1

n2 + 3n+ 2
.

1

2
[THIS PROBLEM CORRESPONDS WITH SECTION 10.2]

3. Which of the following series converges?

I.
∞∑

n=1

1

n+ 2
√
n

II.

∞∑

n=2

n√
n5 − 1

III.

∞∑

n=1

lnn

n2

A. I and II only

B. II and III only

C. I and III only

D. II only

E. III only

B [THIS PROBLEM CORRESPONDS WITH SECTION 10.3]



464

4. Which of the following series converges absolutely?

I.

∞∑

n=1

(−1)n+1

1.1n

II.
∞∑

n=1

(−1)n

n cos(πn)

III.
∞∑

n=1

(−1)n

2n + .5n

A. I only

B. II only

C. III only

D. I and II only

E. I and III only

E [THIS PROBLEM CORRESPONDS WITH SECTION 10.4]

5. For which of the following series is the Ratio Test inconclusive?

A.

∞∑

n=1

1

n!

B.

∞∑

n=1

2n

n2

C.
∞∑

n=1

3n

2n3 + 1

D.
∞∑

n=1

n!

n3

E.

∞∑

n=1

en

(n− 1)!

C [THIS PROBLEM CORRESPONDS WITH SECTION 10.5]
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6. Consider the function F defined by the power series
∞∑

n=0

(−1)n · xn.

a. Write the first three nonzero terms and the general term for F (x2).

1− x2 + x4 − · · ·+ (−1)n · x2n

b. Determine the interval of convergence of F (x2). Show the work that leads to your
answer.
∣
∣
∣
∣

(−1)n+1x2n+2

(−1)nx2n

∣
∣
∣
∣
< 1

|x2| < 1
−1 < x < 1
The series diverges for x = −1 and 1.

For x = −1, the series is
∞∑

n=1

1n = 1 + 1 + 1 + · · · which diverges.

For x = 1, the series is

∞∑

n=1

(−1)n = −1 + 1 − 1 + · · · and the partial sums do not

converge.
Alternate solution: The series is geometric with a common ratio of −x2 and will

converge for |x2| < 1 or −1 < x < 1 only.

c. Given that F (x2) =
1

a+ bxc
, find the values of a, b, and c.

This is a geometric series with common ration −x2. Thus F (x2) =
1

1 + x2
and a = 1,

b = 1, c = 2.

d. Evaluate the improper integral

∫ ∞

0

F (x2) dx. Show the work that leads to your con-

clusion.

∫ ∞

0

F (x2) dx =

∫ ∞

0

1

1 + x2
dx = lim

b→∞

∫ b

0

1

1 + x2
dx = lim

b→∞
tan−1 x

∣
∣
∣
∣

b

0

=
π

4
[THIS PROBLEM CORRESPONDS WITH SECTION 10.6]
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7. In the Maclaurin series expansion of f(x) = 8(x+ 4)3/2, what is the coefficient of the x3

term?

A. −3

B. −3

8

C. − 1

16

D.
3

8

E.
3

2
B [THIS PROBLEM CORRESPONDS WITH SECTION 10.7]
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Ray Cannon’s Chapter 11 Overview

Chapter 11 has no topic from the AB course description, and deals with the calculus
of curves defined in ways other than simply as the graph of a function y = f(x). Section
11.1 starts by treating a curve as giving the location of a particle, (x(t), y(t)), thought
of as a function of time, and shows how to find the familiar tangent line in terms of the
derivatives of the coordinate functions. Section 11.2 introduces the concept of speed of a
particle, and makes the connection between speed and the length of the curve. This is a
connection many students fail to make when taking the BC exam; they fail to understand
length of a curve as distance the particle travels.

Section 11.3 introduces the concept of polar coordinates, and then Section 11.4 presents
the calculus involved with polar coordinates.

Sections 11.5 through 11.7 cover the notion of vectors in the plane, both the algebra
of vectors and the geometry, and finally in Section 11.7 the calculus, both differentiation
and antidifferentiation, of vector functions.
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11. Parametric Equations, Polar Coordinates, and
Vector Functions

11.1. Parametric Equations.

Class Time AB 0 periods; BC 2 periods. Essential.

Ideally, most of this section is review of precalculus work. BC students should understand
how a parametric equation defines a path in the plane. The first derivative of a parametric
equation is new material.

Key Points

• A path traced by a point P = (x, y), where x and y are functions of a parameter t,
is called a parametric or parametrized path or curve. We write c(t) = (f(t), g(t))
or c(t) = (x(t), y(t)).

• Note that the path c(t) = (x(t), y(t)) and the curve that it traces may be different,
as the path (cos t, sin t) moves around the unit circle infinitely many times as t
varies from 0 to ∞.

• Parametrizations are not unique. In fact, every path can parametrized in infinitely
many ways.

• The slope of the tangent line at a point on a parametrized curve c(t) = (x(t), y(t))
is the derivative

dy

dx
=

dy/dt

dx/dt
=

y′(t)

x′(t)

provided that x′(t) 6= 0
• Note that the derivatives dy/dt and dx/dt are not the same as the derivative
dy/dx, which is the slope of the tangent line.

Lecture Material
Begin by defining a parametric equation. Work Exercise 1 to demonstrate how to plot
points with a parametric curve. Explain the difference between the underlying curve of
the parametric equation and the path of the parametric curve using the parametrization
x = cos t and y = sin t of the the unit circle. Also show by working Exercise 2 that
some parametric equations can also be written in the form y = f(x) by eliminating
the parameter. Show the parametric form of a line given in Example 4, as well as the
parametrization of a circle (with center at origin and at (a, b) - this follows Example 4 in
the text). Also explain how to graph parametric curves by working Exercise 18, and how
to obtain parametric equations for common curves by working Exercise 26. Now show
that the slope of the line tangent to the curve c(t) = (x(t), y(t)), where x(t) and y(t) are
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differentiable and x′(t) 6= 0, is
dy

dx
=

dy/dt

dx/dt
=

y′(t)

x′(t)
, and illustrate this result by working

Exercise 49.

Discussion Topics/Class activities
Work Exercise 85 with your students. This is an exercise on how to find the area under a
parametrized curve (that has nice properties); or discuss Bézier curves and do Example
10.

Suggested Problems
Exercises 4 (graphical), 7 – 13 odd (computational), 15 – 19 odd (graphical), 21 – 37 odd
(computational), 45 – 57 odd (computational)
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Worksheet 11.1.
Parametric Equations

1. Find the coordinates at t = 0,
π

4
, and π of a particle moving along the path c(t) =

(cos 2t, sin2 t).

2. Express x = t−1, y = t−2, in the form y = f(x) by eliminating the parameter.

3. Graph the curve x = 2 + 4t, y = 3 + 2t, and draw an arrow specifying the direction
corresponding to motion.

-1 1 2 3 4 5 6

-1

1

2

3

4

5

6
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4. Find the parametric equations for the curve y = 8x2 − 3x.

5. Find an equation y = f(x) for the parametric curve c(t) = (
1

2
t,
1

4
t2 − t), and compute

dy

dx
in two ways: using Equation 7 and by differentiating f(x).
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Solutions to Worksheet 11.1

1. Find the coordinates at t = 0,
π

4
, and π of a particle moving along the path c(t) =

(cos 2t, sin2 t). Setting t = 0 ,t =
π

4
and t = π in c (t) =

(
cos 2t, sin2t

)
we obtain the

following coordinates of the particle:
t = 0 :

(
cos 2 · 0, sin20

)
= (1, 0)

t =
π

4
:

(

cos
2π

4
, sin2π

4

)

=

(

0,
1

2

)

t = π :
(
cos 2π, sin2π

)
= (1, 0)

2. Express x = t−1, y = t−2, in the form y = f(x) by eliminating the parameter.
From x = t−1, we have t = x−1. Substituting in y = t−2 we obtain:

y = t−2 =
(
x−1
)−2

= x2 ⇒ y = x2, x 6= 0.

3. Graph the curve x = 2 + 4t, y = 3 + 2t, and draw an arrow specifying the direction
corresponding to motion.

We find the function by eliminating the parameter. Since x = 2 + 4t we have t =
x− 2

4
,

hence y = 3 + 2

(
x− 2

4

)

or y =
x

2
+ 2.

Also, since 2 + 4t and 3 + 2t are increasing functions the direction of motion is the
direction of increasing t.

4. Find the parametric equations for the curve y = 8x2 − 3x.
Letting t = x yields the parametric representation:

c (t) =
(
t, 8t2 − 3t

)
.

Another representation is obtained as follows:
We first complete the square in y = 8x2 − 3x to obtain:

y = 2

(

4x2 − 2 · 3
4
x+

9

16

)

− 9

8
= 2

(

2x− 3

4

)2

− 9

8

We now let t = 2x− 3

4
. Then x =

4t+ 3

2
and y = 2t2 − 8

9
yielding the parametrization:

c (t) =

(
4t+ 3

2
, 2t2 − 8

9

)

.

5. Find an equation y = f(x) for the parametric curve c(t) = (
1

2
t,
1

4
t2− t), and compute

dy

dx

in two ways: using Equation 7 and by differentiating f(x). Since x =
1

2
t we have t = 2x.

Substituting in y =
1

4
t2 − t yields:
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y =
1

4
(2x)2 − 2x = x2 − 2x.

We differentiate y = x2 − 2x and then substitute x =
1

2
· 3 =

3

2
in the derivative:

dy

dx
= 2x− 2 ⇒ dy

dx
|x= 3

2

= 2 · 3
2
− 2 = 1.

Now, we find
dy

dx
using Eq. (7). Thus,

dy

dx
=

y′ (t)

x′ (t)
=

(
1
4
t2 − t

)′

(
1
2
t
)′ =

1
2
t− 1
1
2

= t− 2 ⇒ dy

dx
|t=3 = 3− 2 = 1.
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11.2. Arc Length and Speed.

Class Time AB 0 periods; BC 1 period. Essential.

Key Points

• The length s along a path c(t) = (x(t), y(t)) for a ≤ t ≤ b is

s = arc length =

∫ b

a

√

x′(t)2 + y′(t)2dt

• The arc length s is equal to the distance traveled over a given time interval [t0, t1],
while the net displacement is the distance between the starting point c(t0) and
the endpoint c(t1).

• The speed of a particle with trajectory c(t) = (x(t), y(t)) is
ds

dt
=
√

x′(t)2 + y′(t)2.

Lecture Material
Begin by reminding the students about the formula for calculating the arc length ob-

tained in Section 9.1, arc length =

∫ b

a

√

1 + f ′(x)2dx. Then generalize this formula for

parametric equations (which conceptually is the same as the preceding formula, and is
obtained by using line segments to approximate the arc length, as in Figure 1) to obtain
the following formula: Let c(t) = (x(t), y(t)) and assume that x′(t) and y′(t) exist and
are continuous. Then the length s of c(t) for a ≤ t ≤ b is equal to

s =

∫ b

a

√

x′(t)2 + y′(t)2dt.

Now work Exercise 4 to illustrate the use of this result. As the distance traveled by a
particle can be interpreted as the length of the curve traced by the particle, if c(t) =
(x(t), y(t)) is the path of a particle, the distance traveled by the particle is s as above.
Hence the speed of the particle is the derivative of s, and so by the Fundamental Theorem
of Calculus, the speed at time t of a particle with trajectory c(t) = (x(t), y(t)) is

ds

dt
=
√

x′(t)2 + y′(t)2.

Work Exercise 16 to illustrate this. Finally, remind the students that the distance a
particle travels in an interval is not the same as its net change in position, or displacement.

Discussion Topics/Class activities
Exercise 36 is an application that a large number of students will find interesting.

Suggested Problems
Exercises 1 – 13 odd (computational), 17 – 23 odd (computational), 25 (graphing calcu-
lator)
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Worksheet 11.2.
Arc Length and Speed

1. Find the length of the path of (1 + 2t, 2 + 4t) over the interval 1 ≤ t ≤ 4.

2. Determine the speed s(t) of a particle with trajectory (t3, t2) at time t = 2 (in units of
meters and seconds).
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Solutions to Worksheet 11.2

1. Find the length of the path of (1 + 2t, 2 + 4t) over the interval 1 ≤ t ≤ 4.
We have x = 1 + 2t and y = 2 + 4t, hence x′ = 2 and y′ = 4. Using the Formula for

Arc Length we obtain:

S =

4∫

1

√
22 + 42dt =

4∫

1

√
20dt =

√
20 (4− 1) = 6

√
5

2. Determine the speed s(t) of a particle with trajectory (t3, t2) at time t = 2 (in units of
meters and seconds).

We have x (t) = t3, y (t) = t2 hence x′ (t) = 3t2, y′ (t) = 2t. The speed of the particle
at time t is thus,
ds

dt
=

√

x′(t)2 + y′(t)2 =
√
9t4 + 4t2 = t

√
9t2 + 4.

At time t = 2 the speed is:
ds

dt
|t=2 = 2

√
9 · 22 + 4 = 2

√
40 = 4

√
10 ≈ 12.65m/s.
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11.3. Polar coordinates.

Class Time AB 0 periods; BC 1–2 periods. Essential.

Ideally, most of this section is a review of precalculus work. BC students should be able
to find the intersection of two polar curves and calculate the area enclosed by one curve
or between two curves. Area is discussed in Section 11.4.

Key Points

• A point P in the plane has polar coordinates (r, θ), where r is the distance from
P to the origin and θ is the angle between the positive x-axis and the segment
OP in the counterclockwsie direction. The rectangular coordinates of P are:

x = r cos θ, y = r sin θ

• If P has rectangular coordinates (x, y), then: r =
√

x2 + y2, tan θ =
y

x
. Note

that θ must be chosen so that (r, θ) lies in the proper quadrant. If x = 0, then
θ = π/2 if y > 0 while θ = −π/2 if y < 0.

• A point does not have a unique polar representation, as the points (r, θ) and
(r, θ+2nπ) represent the same point for all integers n. Also, the origin has polar
coordinates (0, θ) for all θ.

• Negative radial coordinates can be represented as (−r, θ) = (r, θ + π).
• Note the following common polar equations:

curve polar equation

circle of radius R, center at the origin r = R

line through origin of slope m = tan θ0 θ = θ0

line where P = (d, α) is point closest to the origin r = d sec(θ − α)

(x− a)2 + y2 = a2 r = 2a cos θ

x2 + (y − a)2 = a2 r = 2a sin θ
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Lecture Material
Polar coordinates are an alternative way of plotting points in the usual Cartesian plane.
The coordinate of a point P are (r, θ), where r is the distance from P to the origin O,
and θ is the angle between OP and the positive x-axis. Use Figure 2 to show how to
plot a point in polar coordinates, and use Figure 1 to show that the following formulas
for converting rectangular coordinates to polar coordinates and vice versa hold:

Polar to Rectangular Rectangular to Polar

x = r cos θ r =
√

x2 + y2

y = r cos θ tan θ =
y

x

Work Exercises 3 and 6 to demonstrate the use of these formulas. Point out the following
facts and conventions:

• the angular coordinate θ is not unique as (r, θ) and (r, θ + 2πn) label the same
point,

• the origin does not have a well defined angular coordinate, so by convention we
assign to the origin the polar coordinates (0, θ) for any θ,

• θ = tan−1 y

x
is only valid if x 6= 0. If x = 0, then P = (0, y) (in rectangular

coordinates) lies on the y-axis, so the polar angle θ =
π

2
if y > 0 or −π

2
if y < 0.

• By convention, negative radial coordinates are allowed. For r > 0, (−r, θ) is
defined to be the reflection of (r, θ) through the origin, as in Figure 4. Hence
(−r, θ) and (r, θ + π) label the same point.

Now show the derivations of the polar equations given in the table in the Key Points
above (note that the derivation of r = d sec(θ−α) is given in Example 5), and then work
Exercises 12, 14, 18, and 20.

Discussion Topics/Class activities

Exercise 49, which shows how to find
dy

dx
in polar coordinates.

Suggested Problems
Exercises 1, 2, 4, 5 (computational), 13–21 odd (computational), 31 (graphical), 33
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Worksheet 11.3.
Polar Coordinates

1. Use a calculator to convert from rectangular to polar coordinates (make sure your choice
of θ gives the correct quadrant):

(a) (2, 3)

(b) (4,−7)

(c) (−3,−8)

(d) (−5, 2)

2. Convert from polar to rectangular coordinates:

(a) (0, 0)

(b) (−4,
π

3
)

(c) (0,
π

6
)

3. Convert r = 7 to an equation in rectangular coordinates.
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4. Convert r = 2 sin θ to an equation in rectangular coordinates.

5. Convert x2 + y2 = 5 to an equation in polar coordinates.

6. Convert y = x2 to an equation in polar coordinates.
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Solutions to Worksheet 11.3

1. Use a calculator to convert from rectangular to polar coordinates (make sure your choice
of θ gives the correct quadrant):

(a) (2, 3)

(b) (4,−7)

(c) (−3,−8)

(d) (−5, 2)

Part a:
The point (2, 3) is in the first quadrant, x = 2 and y = 3. Hence:

θ = tan−1

(
3

2

)

≈ 0.98

r =
√
22 + 32 =

√
13 ≈ 3.6

⇒ (r, θ) ≈ (3.6, 0.98) .

Part b:
The point (4,−7) is in the fourth quadrant with x = 4 and y = −7. Thus,

θ = tan−1

(−7

4

)

= 2π − 1.05 ≈ 5.2

r =

√

42 + (−7)2 =
√
65 ≈ 8.1

⇒ (r, θ) ≈ (8.1, 5.2) .

Part c:
The point (−3,−8) is in the third quadrant, with x = −3 and y = −8. Thus,

θ = tan−1

(−8

−3

)

= tan−1

(
8

3

)

= π + 1.2 ≈ 4.3

r =

√

(−3)2 + (−8)2 ≈ 8.5

⇒ (r, θ) ≈ (8.5, 4.3) .

Part d:
The point (−5, 2) is in the second quadrant, with x = −5 and y = 2. Hence:

θ = tan−1

(
2

−5

)

= π − 0.38 ≈ 2.8

r =

√

(−5)2 + 22 =
√
29 ≈ 5.4

⇒ (r, θ) ≈ (5.4, 2.8) .
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2. Convert from polar to rectangular coordinates:

(a) (0, 0)

(b) (−4,
π

3
)

(c) (0,
π

6
)

Part a:
r = 0, θ = 0 are polar coordinates of the origin (x, y) = (0, 0).
Part b:
The point (r, θ) =

(

−4,
π

3

)

has rectangular coordinates,

x = r cos θ = −4 cos
π

3
= −4 · 1

2
= −2

y = r sin θ = −4 sin
π

3
= −4 ·

√
3

2
= −2

√
3

⇒ (x, y) =
(

−2,−2
√
3
)

Part c:
The point

(

0,
π

6

)

is the origin (x, y) = (0, 0). Recall that the polar coordinates of the

origin are (0, θ) for any θ.

3. Convert r = 7 to an equation in rectangular coordinates.
r = 7 describes the points having distance 7 from the origin, that is, the circle with

radius 7 centered at the origin.
The equation of the circle in rectangular coordinates is: x2 + y2 = 72 = 49

4. Convert r = 2 sin θ to an equation in rectangular coordinates.
We multiply the equation by r and substitute r2 = x2 + y2, r sin θ = y.

This gives: r2 = 2r sin θ, x2 + y2 = 2y.
Transfering sides and completing the square yield:
x2 + y2 − 2y = 0, x2 + (y − 1)2 = 1.
Thus, r = 2 sin θ is the equation of a circle of radius 1 centered at (0, 1).

5. Convert x2 + y2 = 5 to an equation in polar coordinates.
We make the substitution x2 + y2 = r2 to obtain; r2 = 5 or r =

√
5.

6. Convert y = x2 to an equation in polar coordinates.
Substituting y = r sin θ and x = r cos θ yields:

r sin θ = r2cos2θ

Then, dividing by rcos2θ we obtain:
sin θ

cos2 θ
= r, r = tan θ sec θ.
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11.4. Area and Arc Length in Polar Coordinates.

Class Time AB 0 periods; BC 1 period. Essential.

BC students should be able to find the intersection of two polar curves and calculate the
area enclosed by one curve or between two curves.

Key Points

• Polar coordinates are used to find the area bounded by the polar curve r = f(θ)
and two rays θ = α and θ = β. The area is equal to

1

2

∫ β

α

f(θ)2dθ

• The area between the polar curves r = f1(θ) and r = f2(θ), where f1(θ) ≥ f2(θ),
is

1

2

∫ β

α

(f1(θ)
2 − f2(θ)

2)dθ

Lecture Material
First derive the formula for determining area in polar coordinates. This is done by
dividing the area under consideration into “triangular strips” (see Figure 1), calculating
the area of the strips, and then using the usual limiting procedure. The resulting formula
is: If f(θ) is a continuous function, then the area bounded by a curve in polar form
r = f(θ) and the rays θ = α and θ = β is

1

2

∫ β

α

r2dθ =
1

2

∫ β

α

f(θ)2dθ.

Point out that the formula above give the actual area, and remains valid if f(θ) is negative.
Illustrate this formula by working Exercise 4. Next, the area between two curves in polar
coordinates is exactly as the students expect: The area between r = f1(θ) and r = f2(θ)
with f1(θ) ≤ f2(θ) in the section α ≤ θ ≤ β is given by

1

2

∫ β

α

(f1(θ)
2 − f2(θ)

2)dθ.

Work Exercise 12 to illustrate the use of this formula.
The formula for arc length is not tested on the BC exam and may be omitted.

Selected Problems
Exercises 1–35 every other odd (computational and graphical)
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Worksheet 11.4.
Area and Arc Length in Polar Coordinates

1. Compute the area of the shaded region 0 ≤ r ≤ 4 cos θ, −π/4 ≤ θ ≤ π/3, as an integral
in polar coordinates.

1 2 3 4

-2

-1

1

2

1 2 3 4

-2

-1

1

2

2. Find the area of the intersection of the circles r = sin θ and r = cos θ.

-0.4 -0.2 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0.2

0.4

0.6

0.8

1

3. Calculate the total length of the circle r = 4 sin θ using an integral in polar coordinates.
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Solutions to Worksheet 11.4

1. Compute the area of the shaded region 0 ≤ r ≤ 4 cos θ, −π/4 ≤ θ ≤ π/3, as an integral
in polar coordinates.

1 2 3 4

-2

-1

1

2

1 2 3 4

-2

-1

1

2

1

2

∫ π
3

−π
4

16 cos2 θ dθ = 8

∫ π
3

=π
4

(
1 + cos 2θ

2

)

dθ = 4

(

θ +
sin 3θ

2

)

|
π
3

−π
4

=
7π

3
+
√
3 + 2.

2. Find the area of the intersection of the circles r = sin θ and r = cos θ.

-0.4 -0.2 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0.2

0.4

0.6

0.8

1

2

2

∫ π
4

0

sin2 θ dθ =

∫ π
4

0

1− cos 3θ

2
dθ =

(
θ

2
− sin 2θ

4

)

|
π
4

0 =
π − 2

8

3. Calculate the total length of the circle r = 4 sin θ using an integral in polar coordinates.
We use the Formula for the Arc Length:
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S =

β∫

α

√

f(θ)2 + f ′(θ)2dθ (1)

In this case, f (θ) = 4 sin θ and f ′ (θ) = 4 cos θ, hence:

√

f(θ)2 + f ′(θ)2 =

√

(4 sin θ)2 + (4 cos θ)2 =
√

16
(
sin2θ + cos2θ

)
= 4 (2)

The circle is traced as θ is varied from 0 to π.
Substituting α = 0, β = π and (2) in (1) yields:

S =

π∫

0

4dθ = 4π
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11.5. Vectors in the Plane.

Class Time AB 0 periods; BC 1–2 periods. Essential.

This material can be taught in precalculus and reviewed here. If students have not worked
previously with vectors, then more time will be needed here.

Key Points

• A vector v =
−→
PQ is determined by a basepoint or tail P and a terminal point or

head Q. The length of v =
−→
PQ, denoted ‖v‖, is the distance from P to Q.

• The vector v =
−→
OP based at the origin O with head P = (a, b) is the position

vector of P .
• Two vectors v and w are equivalent if they are translates of each other. That
is, if v and w have the same magnitude and direction, but possibly different
basepoints.

• The vector v =
−→
PQ, where P = (a1, b1) and Q = (a2, b2), has components

a = a2 − a1 and b = b2 − b1.
• Two vectors are equivalent if and only if they have the same components. If v has
components a and b, we write v = 〈a, b〉. This notation is somewhat ambiguous
as equivalent vectors have the same components, but in practice rarely causes
confusion. We use the standard convention that all vectors are based at the
origin unless otherwise stated.

• If v = 〈a, b〉, then ‖v‖ =
√
a2 + b2.

• Vector addition is defined geometrically by the parallelogram law. If λ is a scalar,
then the scalar multiple λv is the vector of length |λ| ‖v‖ in the same directions
as v if λ > 0 and in the opposite direction if λ < 0. For λ = 0, we set 0v = 0. In
components, we have:

〈a, b〉+ 〈d, c〉 = 〈a+ d, b+ c〉 and λ〈a, b〉 = 〈λa, λb〉.
• Non-zero vectors v and w are parallel if w = λv for some scalar λ 6= 0. They
point in the same direction if λ > 0 and in opposite directions if λ < 0.

• A unit vector is a vector of length one. If v 6= 0, the unit vector pointing in the

direction v is e
v
=

1

‖v‖v.
• Every vector can be expressed as a linear combination of the standard basis vectors
i = 〈1, 0〉 and j = 〈0, 1〉. If v = 〈a, b〉, then v = ai+ bj.

• If v = 〈a, b〉 is non-zero and makes an angle θ with the positive x-axis, then
a = ‖v‖ cos θ and b = ‖v‖ sin θ. The unit vector pointing in the direction of v is
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e
v
=

v

‖v‖ = 〈cos θ, sin θ〉.

• The Triangle Inequality states that for any two vectors v and w, ‖v + w‖ ≤
‖v‖+ ‖w‖. Equality holds if and only if w = λv where λ ≥ 0 or v = 0.

Lecture Material
Introduce the basic terminology and notation dealing with two-dimensional vectors. The
length or magnitude of a vector v, denoted ‖v‖, is the distance from the head P of v to
the tail Q of v. Thus if P = (a1, b1) and Q = (a2, b2), then applying the usual distance
formula, we have that

‖v‖ = ‖−→PQ‖ = |P −Q| =
√

(a2 − a1)2 + (b2 − b2)2

The components of a vector v =
−→
PQ where P = (a1, b1) and Q = (a2, b2) are the

quantities a = a2 − a1 (the x-component) and b = b2 − b1 (the y-component). The
components are denoted by 〈a, b〉. Now work Exercise 8.

Two vectors v and w of nonzero length are parallel if the lines through v and w are
parallel (so parallel vectors either point in the same or opposite directions). A vector v
undergoes a translation when it is moved parallel to itself without changing its length
or direction. The resulting vector is a translate of v. Work Exercise 23. Two vectors v
and w are equivalent if w is a translate of v. Note that every vector can be translated
so that its tail is at the origin. We will follow the convention that all vectors are based

at the origin unless otherwise stated. We may thus write v = 〈a, b〉. Note that the zero
vector (whose head and tail coincide) is the vector 0 = 〈0, 0〉 and has length 0. Now
work Exercise 28.

We now turn to vector algebra. Define the scalar multiple λv as the vector of length
|λ|‖v‖ pointing in the same direction as v if λ > 0, and in the opposite direction if λ < 0.
If λ = 0, we set 0v = 0. Hence ‖λv‖ = |λ| ‖v‖. The vector sum v +w is only defined
when v and w have the same basepoint, and can be described in two ways (see Figure 8).
First, translate w to the equivalent vector w′ whose tail coincides with head of v. The
sum v+w is then the vector pointing from the tail of v to the head of w′ (Figure 8 (a)).
Second, the vector sum v +w is the vector pointing from the basepoint to the opposite
vertex of the parallelogram formed by v and w (this is the Parallelogram Law and is
illustrated in Figure 8 (b)). If v = 〈a, b〉 and w = 〈c, d〉 are represented as components,
then we simply have:

• v +w = 〈a+ c, b+ d〉,
• v−w = 〈a− c, b− d〉,
• λv = 〈λa, λb〉,
• v = 0 = 0+ v = v and v − v = 0.

Now work Exercises 10, and 20, and also point out that vector operations obey the usual
laws of algebra, namely the commutative, associative, and distributive laws (Theorem
1).
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A linear combination of vectors v and w is a vector of the form rv+ sw, where r and
s are scalars. Point out using Figure 13 (a) that every vector can be expressed as a linear
combination of v and w, provided that v and w are not parallel. Work Exercise 55 to
illustrate this fact.

A unit vector is a vector of length one. If v = 〈a, b〉, then e
v
=

1

‖v‖v is the unit

vector pointing in the same direction as v. If v makes an angle of θ with the positive
x-axis, then e

v
= 〈cos θ, sin θ〉 and v has components 〈‖v‖ cos θ, ‖v‖ sin θ〉. The unit

vectors i = 〈1, 0〉 and j = 〈0, 1〉 are the standard basis vectors, and clearly every vector
can be written as a linear combination of these vectors. Work Exercise 52. With all of
these ideas in hand, it would probably be worthwhile to work a practical example such
as Exercise 60 to demonstrate that vectors can be useful.

Finally, state the Triangle Inequality: For any two vectors v and w, ‖v + w‖ ≤
‖v‖ + ‖w‖. Equality holds if and only if w = λv where λ ≥ 0 or v = 0. Justify the
Triangle Inequality using Figure 20.

Discussion Topics/Class activities
Work Exercise 65, which will point out that vectors can also be useful in geometry.

Selected Problems
Exercises 1–3 odd (computational and graphical), 5–13 odd (computational) 17–21 odd
(graphical), 23 (computational), 25–27 odd (computational), 29–45 odd (computational),
49–59 odd (computational)
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Worksheet 11.5.
Vectors in the Plane

1. Find the components of
−→
PQ, where P = (1,−4) and Q = (3, 5).

2. Let v = 〈6, 9〉. Which of the following vectors are parallel to v and which point in the
same direction?

(a) 〈12, 18〉

(b) 〈3, 2〉

(c) 〈2, 3〉

(d) 〈−6,−9〉

(e) 〈−24,−27〉

(f) 〈−24,−36〉
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3. Sketch the vectors
−→
AB and

−→
PQ and determine if they are equivalent.

A = (1, 4), B = (−6, 3), P = (1, 4), and Q = (6, 3)

-6 -5 -4 -3 -2 -1 1 2 3 4 5

1

2

3

4

4. Calculate 4(〈1, 1〉+ 〈3, 2〉)

5. Sketch v = 〈1, 3〉, w = 〈2,−2〉, v +w, v −w.

-2 -1 1 2 3

-2

-1

1

2

3
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6. Express u = 〈6,−2〉 as a linear combination u = rv + sw, where v = 〈1, 1〉 and w =
〈1,−1〉. Sketch the vectors u,w,w, and the parallelogram formed by rv and sw.

1 2 3 4 5 6

-2

-1

1

2

3

7. Calculate the linear combination (−2i+ 9j) + (3i− 4j).

8. A plane flying due east at 200 km/hr encounters a 40 km/hr north-easterly wind. The
resultant velocity of the plane is the vector sum v = v1 + v2, where v1 is the velocity
vector of the plane and v2 is the velocity vector of the wind. The angle between v1 and

v2 is
π

4
. Determine the resultant speed of the plane (the length of v).
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Solutions to Worksheet 11.5

1. Find the components of
−→
PQ, where P = (1,−4) and Q = (3, 5).

The components of
−→
PQ are:−→

PQ = 〈3− 1, 5− (−4)〉 = 〈2, 9〉

2. Let v = 〈6, 9〉. Which of the following vectors are parallel to v and which point in the
same direction?

(a) 〈12, 18〉
(b) 〈3, 2〉
(c) 〈2, 3〉
(d) 〈−6,−9〉
(e) 〈−24,−27〉
(f) 〈−24,−36〉

Two vectors are parallel if they are scalar multiples of each other. The vectors point
in the same direction if the multiplying scalar is positive. We use this to obtain the
following conclusions:
Part a:
〈12, 18〉 = 2〈6, 9〉 = 2v ⇒ both vectors point in the same direction.
Part b:
〈3, 2〉 is not a scalar multiple of v, hence the vectors are not parallel.
Part c:

〈2, 3〉 = 1

3
〈6, 9〉 = 1

3
v ⇒ both vectors point in the same direction.

Part d:
〈−6,−9〉 = −〈6, 9〉 = −v ⇒ parallel to v and points in the opposite direction.
Part e:
〈−24,−27〉 is not a scalar multiple of v, hence the vectors are not parallel.
Part f:
〈−24,−36〉 = −4〈6, 9〉 = −4v ⇒ parallel to v and points in the opposite direction.

3. Sketch the vectors
−→
AB and

−→
PQ and determine if they are equivalent.

A = (1, 4), B = (−6, 3), P = (1, 4), and Q = (6, 3)

We compute
−→
AB and

−→
PQ and see if they have the same components:−→

AB = 〈−6− 1, 3− 4〉 = 〈−7,−1〉−→
PQ = 〈6− 1, 3− 4〉 = 〈5,−1〉

⇒ The vectors are not equivalent.

4. Calculate 4(〈1, 1〉+ 〈3, 2〉)
4(〈1, 1〉+ 〈3, 2〉) = 〈7, 6〉
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5. Sketch v = 〈1, 3〉, w = 〈2,−2〉, v +w, v −w.
We compute the sum v+w and the difference v−w and then sketch the vectors. This

gives:
v +w = 〈1, 3〉+ 〈2,−2〉

= 〈1 + 2, 3− 2〉 = 〈3, 1〉
v−w = 〈1, 3〉 − 〈2,−2〉

= 〈1− 2, 3 + 2〉 = 〈−1, 5〉

6. Express u = 〈6,−2〉 as a linear combination u = rv + sw, where v = 〈1, 1〉 and w =
〈1,−1〉.

We have 〈6,−2〉 = r〈1, 1〉 + s〈1,−1〉 Thus 6 = r + s and −2 = r − s. Adding gives
4 = 2r. Thus r = 2 and s = 4

7. Calculate the linear combination (−2i+ 9j) + (3i− 4j).
(−2i+ 9j) + (3i− 4j) = (−2 + 3)i+ (9− 4)j = i+ 5j.

8. A plane flying due east at 200 km/hr encounters a 40 km/hr north-easterly wind. The
resultant velocity of the plane is the vector sum v = v1 + v2, where v1 is the velocity
vector of the plane and v2 is the velocity vector of the wind. The angle between v1 and

v2 is
π

4
. Determine the resultant speed of the plane (the length of v).

The resultant speed of the plane is the length of the sum vector v = v1 + v2. We
place the xy-coordinate system as shown in the figure, and compute the components of
the vectors v1 and v2. This gives:
v1 = 〈v1, 0〉

v2 = 〈v2 cos
π

4
, v2 sin

π

4
〉 = 〈v2 ·

√
2

2
, v2 ·

√
2

2
〉

We now compute the sum v = v1 + v2:

v = 〈v1, 0〉+ 〈
√
2v2
2

,

√
2v2
2

〉 = 〈
√
2

2
v2 + v1,

√
2

2
v2〉

The resultant speed is the length of v, that is:

v = ‖v‖ =

√
√
√
√

(√
2v2
2

)2

+

(

v1 +

√
2v2
2

)2

=

√

v22
2

+ v21 + 2 ·
√
2

2
v2v1 +

v22
2

=

√

v21 + v22 +
√
2v1v2

Finally, we substitute the given information v1 = 200 and v2 = 40 in the equation above,
to obtain:

v =

√

2002 + 402 +
√
2 · 200 · 40 ≈ 230km/hr
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11.6. Dot Product and the Angle Between Two Vectors.

Class Time NOT TESTED ON EITHER THE AB OR BC EXAMS.

Key Points

• The dot product of v = 〈a1, b1〉 and w = 〈a2, b2〉 is v ·w = a1a2 + b1b2.
• By convention, the angle θ between two vectors is chosen to satisfy 0 ≤ θ ≤ π.
• The dot product and the angle θ between v and w are related by the following
equations:

v ·w = ‖v‖ ‖w‖ cos θ, cos θ =
v ·w

‖v‖ ‖w‖ , θ = cos−1

(
v ·w

‖v‖ ‖w‖

)

.

• To test for orthogonality, v ⊥ w if and only if v ·w = 0.
• The angle between v and w is acute if v ·w > 0 and obtuse if v ·w < 0.
• Let v 6= 0. Then every vector u has a decomposition u = u‖ + u⊥, where u‖ is
parallel to v and u⊥ is orthogonal to v. u‖ is the projection of u along v and is
denoted proj

v
(u).

• Let e
v
=

v

‖v‖ be the unit vector in the direction of v. Then

proj
v
(u) = (u · e

v
)e

v
=

(
u · v
v · v

)

v.

and u⊥ = u− u‖.
• Let θ be the angle between u and v. The component of u along v is the scalar
quantity

component of u along v = u · e
v
=

u · v
‖v‖ = ‖u‖ cos θ.

Lecture Material
The dot product v ·w of two vectors v = 〈a1, b1〉 and w = 〈a2, b2〉 is v ·w = a1a2 + b1b2.
Point out that the dot product is extremely important in multivariable calculus, as the
students will see later. Discuss the elementary properties of the dot product that are
summarized in Theorem 2, and work Exercises 2 and 38. Now derive Theorem 3, which
gives the relationship between the dot product and the angle θ between two non-zero
vectors v and w:

v ·w = ‖v‖‖w‖ cos θ or cos θ =
v ·w

‖v‖ ‖w‖ .

Remark that while the angle between two vectors is not unique, we will adopt the standard
convention that this angle satisfies 0 ≤ θ ≤ π. Of course, we may now solve the preceding
equation for θ and obtain
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θ = cos−1

(
v ·w

‖v‖ ‖w‖

)

.

Two non-zero vectors v and w are perpendicular or orthogonal, written v ⊥ w, if the
angle θ between them is π/2. Hence v ⊥ w if and only if v ·w = 0. Similarly, point out
that θ is obtuse (π/2 < θ ≤ π) if v ·w < 0. Now work Exercises 14 and 24.

Given two vectors v 6= 0 and w, it is possible to write u = u‖+u⊥, where u‖ is parallel
to v and u⊥ is perpendicular to v (see Figure 6). The vector u‖ is the projection of u
along v, and is denoted by proj

v
(u). Show that

proj
v
(u) = (u · e

v
)e

v
=

(
u · v
v · v

)

v.

Note that we may find u⊥ as u⊥ = u− u‖ (and verify that u⊥ is orthogonal to v). The

scalar u · e
v
is the component of u along v and u · e

v
=

u · v
‖v‖ = ‖u‖ cos θ.

Discussion Topics/Class activities
Work Exercise 40, where the Law of Cosines is derived.

Selected Problems
Exercises 1–9 every other odd (computational), 13–17 odd (computational), 23–27 odd
(computational), 37, 39, (computational), 41–47 odd (computational), 49–53 odd (com-
putational)
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Worksheet 11.6.
Dot Product and the Angle Between Two Vectors

1. Compute the dot product 〈3,−2, 2〉 · 〈1, 0, 1〉.

2. Simplify the expression (v +w) · (v +w)− 2v ·w

3. Determine if the vectors 〈1, 1, 1〉 and 〈3,−2,−1〉 are orthogonal and if not, whether the
angle between them is acute or obtuse.

4. Find the angle between the vectors 〈1, 1, 5〉 and 〈1,−1, 5〉.

5. Find the projection proj
v
(u), where u = 〈2, 0〉 and v = 〈4, 3〉.

6. Find the decomposition a = a‖ + a⊥ with respect to b, where a = 〈4,−1, 0〉 and b =
〈0, 1, 1〉.
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Solutions to Worksheet 11.6

1. Compute the dot product 〈3,−2, 2〉 · 〈1, 0, 1〉.
By the definition of the dot product we have 〈3,−2, 2〉·〈1, 0, 1〉 = 3·1+(−20·0+2·1 = 5.

2. Simplify the expression (v +w) · (v +w)− 2v ·w
Using properties of the dot product we obtain:

(v +w) · (v +w)− 2v ·w = v · (v +w) +w · (v +w)− 2v ·w
= v · v + v ·w +w · v +w ·w− 2v ·w
= ‖v‖2 + v ·w + v ·w + ‖w‖2 − 2v ·w
= ‖v‖2 + ‖w‖2

3. Determine if the vectors 〈1, 1, 1〉 and 〈3,−2,−1〉 are orthogonal and if not, whether the
angle between them is acute or obtuse.

We compute the dot product of the two vetors, 〈1, 1, 1〉 · 〈3,−2,−1〉 = 0. Thus the
vectors are orthogonal.

4. Find the angle between the vectors 〈1, 1, 5〉 and 〈1,−1, 5〉.
We denote v = 〈1, 1, 5〉, w = 〈1,−1, 5〉. To use the formula for the cosine of the angle

between two vectors we first compute the following values:
‖v‖ =

√
12 + 12 + 52 =

√
27

‖w‖ =

√

12 + (−1)2 + 52 =
√
27

v ·w = 〈1, 1, 5〉 · 〈1,−1, 5〉
= 1 · 1 + 1 · (−1) + 5 · 5 = 25

Hence,

cos θ =
v ·w

‖v‖‖w‖ =
25√

27 ·
√
27

=
25

27

⇒ θ = cos−1

(
25

27

)

≈ 22.19◦

5. Find the projection proj
v
(u), where u = 〈2, 0〉 and v = 〈4, 3〉.

We compute the dot products:
u · v = 〈2, 0〉 · 〈4, 3〉 = 2 · 4 + 0 · 3 = 8

v · v = ‖v‖2 = 42 + 32 = 25
The projection of u along v is the following vector:

proj
v
(u) =

(u · v
v · v

)

v =
8

25
〈4, 3〉 = 〈32

25
,
24

25
〉.



499

6. Find the decomposition a = a‖ + a⊥ with respect to b, where a = 〈4,−1, 0〉 and b =
〈0, 1, 1〉.

We first compute a · b and b · b to find the projection of a along b:
a · b = 〈4,−1, 0〉 · 〈0, 1, 1〉 = 4 · 0 + (−1) · 1 + 0 · 1 = −1
b · b = ‖b‖2 = 02 + 12 + 12 = 2
Hence,

a‖ =

(
a · b
b · b

)

b =
−1

2
〈0, 1, 1〉 = 〈0,−1

2
,−1

2
〉

We now find the vector a⊥ orthogonal to b by computing the difference:

a− a‖ = 〈4,−1, 0〉 − 〈0,−1

2
,−1

2
〉 = 〈4,−1

2
,
1

2
〉

We, thus, have:

a = a‖ + a⊥ = 〈0,−1

2
,−1

2
〉+ 〈4,−1

2
,
1

2
〉
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11.7. Calculus of Vector-Valued Functions.

Class Time AB 0 periods; BC 2 periods. Essential.

For the BC Calculus exam, only parametric and vector functions in the plane are required.
Students should be able to work with the velocity vector as the derivative of the position
vector or the derivative of the curve given in parametric form.

Key Points

• Limits, differentiation and integration of vector-valued functions are performed
componentwise.

• The derivative r′(t0) is called the tangent vector or velocity vector at r(t0).
• If r′(t0) 6= 0, then the tangent line at t0 has vector parameterization

l(t) = r(t0) + tr′(t0) for all t ∈ R.

• If R1(t) and R2(t) are differentiable, vector-valued functions such that R′
1(t) =

R′
2(t) on [a, b], then R2(t) = R1(t) + c0 on [a, b] for some constant vector c0.

• The Fundamental Theorem for vector-valued functions: if r(t) is continuous on
[a, b] and if R(t) is an antiderivative of r(t), then

∫ b

a

r(t) dt = R(b)−R(a).

Lecture Material
This section is about extending limits, continuity, differentiation and integration to three-
dimensional vector-valued functions. A vector-valued function r(t) approaches a vector
v as t approaches t0, if lim

t→t0
||r(t) − v|| = 0, and we write lim

t→t0
r(t) = v. Use the slide

provided to illustrate this definition. Prove Theorem 2 that vector-valued limits are
computed componentwise. This is actually the most important concept in this section.
Work Exercises 2 and 4.

Thus continuity, differentiation and integration are defined componentwise, that is,
r(t) is continuous at t if and only if each component function is continuous at t, r(t) is
differentiable at t if and only if each component function is differentiable at t, and r(t)
is integrable on [a, b] at t if and only if each component function is integrable on [a, b].
Work Exercises 8, 12, and 40

Review the Sum Rule, Constant Multiple rule and Chain Rule and work Exercises 8
and 12.

If r(t) is a vector-valued function then r′(t0) is the vector tangent to the curve parame-
terized by r(t) at the point r(t0). Thus the tangent line at that point is l(t) = r(t0)+tr′(t0)
for all t ∈ R. Work Exercise 14. It is interesting to note that r(t) has constant length if
and only if r(t) is orthogonal to r′(t). This is the content of example 6.
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Example 7 indicates one difference between vector and scalar-valued derivatives by
finding the points on a planar curve where the tangent line is horizontal.

An antiderivative of r(t) is a vector-valued functionR(t) such thatR′(t) = r(t). Similar
to the scalar-valued case, if two vector-valued functions with the same derivative on an
interval just differ by a constant vector. Finally, end with the Fundamental Theorem of
Calculus for Vector-Valued Functions and work Exercises 42 and 44.

The position vector 〈x(t), y(t)〉 gives the same graph as the parametric curve x = x(t),
y = y(t). The derivative of this vector 〈x′(t), y′(t)〉 gives the velocity vector of a point
moving on the parametric curve; the derivative of the velocity vector 〈x′′(t), y′′(t)〉 is the
acceleration vector of the moving point. Use questions from past AP exams to explore
these ideas. These ideas are tested every year on the BC exam.

Suggested Problems
Exercises 1, 5, 7–15 odd, supplement with questions from the AP exams
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Worksheet 11.7.
Calculus of Vector-Valued Functions

1. Evaluate the following limits.

a. lim
t→π

sin 2ti+ cos tj + tan 4tk

b. lim
t→0

1

t+ 1
i+

et − 1

t
j + 4tk

2. Compute the derivatives of the following vector-valued functions with respect to t.

a. v(t) = 〈sin 3t, cos t〉

b. c(t) = t−1i− e2tk

3. Evaluate

∫ 1

0

〈2t, 4t,− cos t〉 dt.
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Solutions to Worksheet 11.7

1. Evaluate the following limits.

a. lim
t→π

sin 2ti+ cos tj + tan 4tk

lim
t→π

sin 2ti+ cos tj + tan 4tk = −j

b. lim
t→0

1

t+ 1
i+

et − 1

t
j + 4tk

lim
t→0

1

t+ 1
i+

et − 1

t
j + 4tk = i+ j

2. Compute the derivatives of the following vector-valued functions with respect to t.

a. v(t) = 〈sin 3t, cos t〉
v′(t) = 〈3 cos 3t,− sin t〉.

b. c(t) = t−1i− e2tk
c′(t) = −t−2i− 2e2tk.

3. Evaluate

∫ 1

0

〈2t, 4t,− cos t〉 dt.
The vector valued integration is defined via componentwise integration. Therefore,

∫ 1

0

〈2t, 4t,− cos 3t〉 dt =

〈∫ 1

0

2t dt,

∫ 1

0

4t dt,

∫ 1

0

− cos 3t dt

〉

=

〈

t2|10, 2t2|10,−
sin 3t

3
|10
〉

=

〈

1, 2,−sin 3

3

〉
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Chapter 11 AP Problems

For 4 and 6, a calculator may be used. For 1, 2, 3 and 5, no calculator allowed.

1. Which of the following gives the slope of the line tangent to the graph of the relation
given by the parametric equations x = 4t2 − 6t+ 2 and y = −3t2?

A. 8t− 6

B. −6t

C.
4t− 3

−3t

D.
−3t

4t− 3

E. −3

4

2. Which of the following gives the length of the path described by the parametric equations

x = sin2 t and y = tan(2t) from x =
π

4
to x =

3π

4
?

A.

∫ 3π/4

π/4

√

sin4 t + tan2(2t) dt

B.

∫ 3π/4

π/4

√

4 cos2 t + 4 sec2(2t) dt

C.

∫ 3π/4

π/4

√

4 sin2 t cos2 t+ 4 sec4(2t) dt

D.

∫ 3π/4

π/4

√

4 cos2 t + 4 sec4(2t) dt

E.

∫ 3π/4

π/4

√

2 sin t cos t+ 2 sec2(2t) dt
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3. Which of the following gives the polar equation for xy = 4?

A. r = 4 sin θ cos θ

B. r = 4 sec θ csc θ

C. r = 2
√
sin θ cos θ

D. r =
4

sin θ cos θ

E. r = 2
√
sec θ csc θ

4. What is the area inside one petal of the rose curve r = 4 cos(2θ)?

A. 1

B. π

C. 4

D. 2π

E. 4π

5. Which of the following gives the area inside r = 2 + 2 sin θ and outside r = 4 sin θ?

A.
1

2

∫ 3π/2

π/2

((2 + 2 sin θ)2 − (4 sin θ)2) dθ

B.

∫ 3π/2

π/2

((2 + 2 sin θ)2 − (4 sin θ)2) dθ

C.

∫ 3π/2

π/2

((2 + 2 sin θ)2 − (4 sin θ)) dθ

D. 2

∫ 3π/2

π/2

((2 + 2 sin θ)2 − (4 sin θ)2) dθ

E.

∫ 3π/2

π/2

((2 + 2 sin θ)− (4 sin θ)) dθ
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6. The figure below shows the graph of f(y) =
3

2
y and g(y) =

√

4− y2 + 2. Let R be the

region bounded by the two curves and the x-axis.

1 2 3 4
x

2

1

3

4

y

f(y)
g(y)

R

a. Set up and evaluate an integral expression that gives the area of R with respect to y.

b. g(y) is part of the curve (x− 2)2 + y2 = 4. Find the polar equation for this curve.

c. Use the polar equation you found in part b to set up an integral expression that gives
the area of R with respect to θ.

7. Which of the following vectors has length 2
√
3 and makes and angle of

π

6
with the x-axis?

I. 〈3,
√
3〉

II. 〈2, 2
√
2〉

III. 〈−
√
3,−1〉

A. I only
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B. I and II only

C. II only

D. I and III only

E. I, II and III

8. Suppose v = 〈3,−4〉. If u is a unit vector perpendicular to v, then u could be

A.

〈
3

5
,−4

5

〉

B.

〈

−3

5
,−4

5

〉

C.

〈
4

5
,
3

5

〉

D.

〈
3

5
,
4

5

〉

E. 〈4, 3〉

9. If r(t) = 〈t3, 2t− 1〉, then r′(2) =

A. 4

B. 3
√
17

C. 〈8, 3〉

D. 〈12, 2〉

E. 〈12, 3〉
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10. The path of a particle satisfies
dr

dt
= 〈4t3, et〉. If r(0) = 〈1, 4〉, then what is the location

of r(2)?

A. 〈0, 1〉

B. 〈1, 3〉

C. 〈4, e4〉

D. 〈17, e2 + 3〉

E. 〈19, e5〉
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Solutions to Chapter 11 AP Problems

1. Which of the following gives the slope of the line tangent to the graph of the relation
given by the parametric equations x = 4t2 − 6t+ 2 and y = −3t2?

A. 8t− 6

B. −6t

C.
4t− 3

−3t

D.
−3t

4t− 3

E. −3

4
D [THIS PROBLEM CORRESPONDS WITH SECTION 11.1]

2. Which of the following gives the length of the path described by the parametric equations

x = sin2 t and y = tan(2t) from x =
π

4
to x =

3π

4
?

A.

∫ 3π/4

π/4

√

sin4 t + tan2(2t) dt

B.

∫ 3π/4

π/4

√

4 cos2 t + 4 sec2(2t) dt

C.

∫ 3π/4

π/4

√

4 sin2 t cos2 t+ 4 sec4(2t) dt

D.

∫ 3π/4

π/4

√

4 cos2 t + 4 sec4(2t) dt

E.

∫ 3π/4

π/4

√

2 sin t cos t+ 2 sec2(2t) dt

C [THIS PROBLEM CORRESPONDS WITH SECTION 11.2]
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3. Which of the following gives the polar equation for xy = 4?

A. r = 4 sin θ cos θ

B. r = 4 sec θ csc θ

C. r = 2
√
sin θ cos θ

D. r =
4

sin θ cos θ

E. r = 2
√
sec θ csc θ

E [THIS PROBLEM CORRESPONDS WITH SECTION 11.3]

4. What is the area inside one petal of the rose curve r = 4 cos(2θ)?

A. 1

B. π

C. 4

D. 2π

E. 4π

D [THIS PROBLEM CORRESPONDS WITH SECTION 11.4]

5. Which of the following gives the area inside r = 2 + 2 sin θ and outside r = 4 sin θ?

A.
1

2

∫ 3π/2

π/2

((2 + 2 sin θ)2 − (4 sin θ)2) dθ

B.

∫ 3π/2

π/2

((2 + 2 sin θ)2 − (4 sin θ)2) dθ

C.

∫ 3π/2

π/2

((2 + 2 sin θ)2 − (4 sin θ)) dθ

D. 2

∫ 3π/2

π/2

((2 + 2 sin θ)2 − (4 sin θ)2) dθ

E.

∫ 3π/2

π/2

((2 + 2 sin θ)− (4 sin θ)) dθ

B [THIS PROBLEM CORRESPONDS WITH SECTION 11.4]
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6. The figure below shows the graph of f(y) =
3

2
y and g(y) =

√

4− y2 + 2. Let R be the

region bounded by the two curves and the x-axis.

1 2 3 4
x

2

1

3

4

y

f(y)
g(y)

R

a. Set up and evaluate an integral expression that gives the area of R with respect to y.

Let A = 1.846153846 (y-value at point of intersection). Then

Area =

∫ A

0

(g(y)− f(y)) dy = 4.198

[THIS PROBLEM CORRESPONDS WITH SECTION 6.1]

b. g(y) is part of the curve (x− 2)2 + y2 = 4. Find the polar equation for this curve.

Substituting x = r cos θ and y = r sin θ, we obtain r = 4 cos θ.
[THIS PROBLEM CORRESPONDS WITH SECTION 11.3]

c. Use the polar equation you found in part b to set up an integral expression that gives
the area of R with respect to θ.

Area =
1

2

∫ tan−1(2/3)

0

(4 cos θ)2 dθ

[THIS PROBLEM CORRESPONDS WITH SECTION 11.4]
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Transformations of 

 sin(x), cos(x),  

csc(x), sec(x) 

Transformations of 

tan(x) and cot(x) 

 

Finding an Inverse 

f 
-1

(x) 
Verifying Inverses 

 

2 Properties of Inverses Even/Odd Functions 

 

Examples of  

Even Functions 

Examples of 

Odd Functions 



C = 2 r 

 

C =  d 

Circle:         A = r2 

Trapezoid:   A = )bb(
h

21
2

  

Triangle:     A = bh
2

1
 

Cylinder:    SA= 2r2+2rh 

Sphere:       SA=4r2
 

 

y = a tan(bx) + c 
 

Amplitude = |a| 

Period =  
b


 

Vertical Shift = c 
 

*Same goes for cot(x) 

y = a sin(bx) + c 
 

Amplitude = |a| 

Period =  
b

2
 

Vertical Shift = c 
*Same goes for cos(x), sec(x), and csc(x) 

 

1. You can verify that two functions are 

inverses algebraically by seeing if 

their composition equals x. 

f( f 
-1

(x)) = x    or    f 
-1

( f (x)) = x 

2. You can verify that two functions are 

inverses graphically by seeing if they 

are symmetrical about the line y = x. 

1. Interchange x and y in the 

equation 

2. Solve for y.  (This will not be 

possible if y cannot be written as 

a function of x) 

3. Replace y with f -1(x) 

 

 
 

1. If the point (a, b) is on the graph of f(x), 

the point (b, a) is on the graph of f 
-1

(x). 

2. The slopes of inverse functions are 

reciprocals. 
 

Ex:  Suppose f(x) and g(x) are inverses 

1. If f(2)=8, then g(8)=2 

If )('f 2 = 3/4, then )('g 8 = 4/3 

 

y = sin x 

y = 
12 x

x
 

y = x5 – x3 

y = x2 

y = cos x 

29 xy   (Semi-Circle) 

 

Odd:  Symmetrical 

about the origin 

f(-x) = - f(x) 

 
Example:  y = x

3
 

y is the opposite sign when 

you plug in x or –x 

 

Even: Symmetrical 

about the y-axis 

f(-x) = f(x) 

 
Example:  y = x

2
 

y is the same whether you 

plug in x or –x 

(-2, 4) (2, 4) 

(-1, -1) 

(1, 1) 



 

Finding Domain 
Function Recognition 

y = e
x
 and y = ln(x) 

 

Parallel Lines 

Perpendicular (Normal) 

Lines 

Strategies for Finding a 

Limit 

 

Horizontal Asymptote Vertical Asymptote 

 

A Function  

Is Continuous If… 
Types of Discontinuities 

 

Average  

Rate of Change 

Instantaneous  

Rate of Change 



 

- You cannot divide by zero 

- You cannot take the square root of a 

negative number 

- You cannot take the ln or log of a 

negative number or zero. 

Example:  
29 xy   Domain: [-3, 3]                                 

                   y = ln(x)       Domain: (0, ∞) 

 

1. Direct Substitution 

2. Factor and Cancel 

3. End Behavior Model (EBM). Use 

for )(lim xf
x 

 

4. Rationalize the Numerator 

5. L’Hôpital’s Rule 

6. Compare Left & Right Hand Limits 

(Piecewise Functions) 

Parallel lines have the same slope 

 

Perpendicular lines have negative 

reciprocal slopes 

 

 

The line x = a is a Vertical Asymptote of 

the graph of a function if either  




)(lim xf
ax

   or    


)(lim xf
ax

. 

Vertical Asymptotes exist at values of x 

that cause the function to be undefined. 

Ex:  f(x) = 
x

1
 has a VA at x = 0 

 

 

The line y = b is a Horizontal Asymptote 

of the graph of a function if either      

bxf
x




)(lim     or    bxf
x




)(lim . 

 

Ex. y = 
1

2

x

x
has a HA of y = 2. 

 

1. Removable (Hole) 

2. Jump 

3. Infinite (Asymptote) 

4. Oscillating 
Note:  If a function is differentiable at a given 

point it is also continuous at that point. 

If a function is continuous at a given point it 

may or may not be differentiable at that point. 

)()(lim cfxf
cx




 

The limit of f(x) as x approaches c equals the 

value at c, and they are finite. 
 

Ex. 
3

3

6 










x

x

x

x
y  is continuous at x=3 

because )3()6(lim)(lim
33

fxx
xx


 

 

 

Derivative 

Slope of a Tangent Line 
 

On the Calculator: 

[MATH] [8] 

Slope = 
ab

)a(f)b(f




 

Slope of a Secant Line 

 

Note:  These 

functions are 

inverses. 

 

Notice the 

symmetry 

about the line 

y = x 



 

Intermediate Value 

Theorem 
Mean Value Theorem 

 

Piecewise Functions 

Continuous?  

Differentiable? 

Position 

Velocity 

Acceleration 

 

Particle Motion 
Definition of a 

Derivative 

 

Implicit Differentiation 

Tips 

Derivative of  

e
x
, a

x
, ln|x|, and log x 

 

Derivative of  

Inverse Trigonometric 

Functions 

Trig Derivatives 



If f(x) is continuous on [a, b] and 

differentiable at every point of its interior (a, 

b), then there is at least one point, c, in the 

interval which 

)('
)()(

cf
ab

afbf






 

Avg Rate of Change = Instantaneous Rate of 

Change 

Slope of Secant Line = Slope of Tangent Line 

  

 

Position  
(units) 

Velocity  
(units/time) 

 Acceleration  
(units/time

2
) 

Example:  















2

2

1

93
)(

2

x

x

kx

xx
xf  

Continuity:  To find the value of k set both 

equations equal, plug in x = 2, and solve. 

Differentiable:  To find k take the derivative 

of each equation plug in x = 2, set them equal 

& solve. 

 

h

xfhxf

h

)()(
lim

0




 or  

ax

afxf

ax 





)()(
lim  

 

Ex:  
h

xhx

h

3tan)(3tan
lim

0




 

Solution:  f(x) = tan3x so the derivative 

is )x('f  = 3sec
2
(3x) 

Particle at Rest:        Velocity = 0 

Moving Forwards:   Velocity is positive 

Moving Backwards: Velocity is negative 

Change Directions:   Velocity changes sign  

                                   (+  to –  or  – to +) 

Speed Up:      v<0 and a<0  OR v>0 and a>0 

Slow Down:  v and a signs differ 

 

xx ee
dx

d
          alnaa

dx

d xx   

 

x
x

dx

d 1
ln           

alnx
xlog

dx

d
a

1
  

 

Don’t Forget Chain Rule! 

1. Remember to write 'y  when you take 

the derivative of y. 

2. Be sure to notice product rule if it is 

there.  If a product rule follows a 

negative sign USE PARENTHESIS. 

3. Only solve for 'y  if asked to find dy/dx 

Otherwise sub in the point to find slope. 

 

 xx
dx

d
cossin            xxx

dx

d
tansecsec   

 xx
dx

d
sincos          xxx

dx

d
cotcsccsc        

xx
dx

d 2sectan          xccsx
dx

d 2cot   

2

1

1

1
sin

x
x

dx

d


     

2

1

1

1
cos

x
x

dx

d


  

2

1

1

1
tan

x
x

dx

d


     

2

1

1

1
cot

x
x

dx

d


  

1||

1
sec

2

1




xx
x

dx

d

1||

1
csc

2

1




xx
x

dx

d  

 

D 
E 
R 
I 
V 
A 
T 
I 
V 
E 

A 
N
T 
I 
-
D 
E 
R 
I 
V 
 

A function that 

is continuous 

on a closed 

interval [a, b] 

takes on every 

value between 

f(a) and f(b). 



 

Basic Rules 

For Differentiation 

Basic Rules 

For Differentiation 

(Continued) 

 

Product and Quotient 

Rule For Differentiation 

Derivative of  

ln[f(x)] 

 

First Derivative Test Second Derivative Test 

 

Second Derivative Test 

for Relative Extrema 
Extreme Value Theorem 

 

Volume Formulas 

(Often used for Related 

Rates Problems) 

Relative Max 

Relative Min 

(Justify your answer) 



4.    )(' )( xfcxcf
dx

d
  

The derivative of a function times a 

constant multiple is the constant multiple 

times its derivative. 

5.   )(')(')()( xgxfxgxf
dx

d
  

The derivative of a sum is the sum of the 

derivatives. 

 

1. 0)( c
dx

d
   

2. 1)( x
dx

d
 

3. 1)(  nn nxx
dx

d
 

 

)(

)('
)](ln[

xf

xf
xf

dx

d
  

Product Rule: 

  )(')()(')()()( xfxgxgxfxgxf
dx

d
  

Quotient Rule: 

 2)(

)(')()(')(

)(

)(

xg

xgxfxfxg

xg

xf

dx

d 








  

 

The second derivative )x(''f  of a function 

can be used to determine where f(x) is: 

 

1. Concave Up ( )x(''f  is positive) 

2. Concave Down ( )x(''f  is negative) 

3. At an Inflection Point 

( )x(''f  changes sign, + to – or – to +) 

FIRST determine where )x('f =0 and where 

)x('f DNE.  State the domain & draw a sign 

line. 

The original function, f(x), is: 

1. Increasing  when )x('f  is positive 

2. Decreasing when )x('f  is negative 

3. At a maximum when )x('f  goes from + 

to - 

4. At a minimum ( )x('f  goes from – to +  

) 

 

 

If a function is continuous on a closed 

interval [a, b] then it has a maximum 

and a minimum value on the interval. 
 

This is an alternate way to determine the 

max/min of a function. 
 

1. If )c('f = 0, and )c(''f < 0, 

f has a local max at x = c. 

 

2. If )c('f = 0, and )c(''f > 0, 

f has a local min at x = c. 

 

 

 

f(x) has a relative max at x = __ because 

)x('f  goes from + to – at x = __. 

 

f(x) has a relative min at x = __ because 

)x('f  goes from – to + at x = __. 

Cube:  V = x3 

Cylinder:  V = r2h 

Cone:  V = (1/3) r2h 

Sphere:  V = (4/3) r3 

Rectangular Prism:  V = LWH 

 

The derivative of a 

constant is zero 

 

The derivative of x is 1 

 

Power Rule 



 

Newton’s Method RAM 

 

Trapezoidal Rule 

(Uneven Intervals) 

Trapezoidal Rule 

(Even Intervals) 

 

Average Value of a 

Function 
Integration Techniques 

 

Integration of 

Basic Trigonometric 

Functions 

Integration of 

Basic Trigonometric 

Functions 

(Continued) 

 

Integration of 

tan(u) and cot(u) 

Integration of 

u

1
,  e

u
, a

u
 



 

Rectangular Approximation Method 

(Estimates Area Under a Curve) 
 

Time(sec) 10 15 30 60 90 

Rate(m/s) 15 20 25 30 35 
 

LRAM=(5)(15)+(15)(20)+(30)(25)+(30)(30) 

RRAM = (5)(20)+(15)(25)+(30)(30)+(30)(35) 

MRAM = (30-10)(20) + (90-30)(30) 

 

Used for determining the zeros of a function. 
 

1. Call the original function f(x).   

   Calculate the derivative )x('f  

2. Evaluate                                    using the 

initial approximation to find x2.   

3. Repeat! 

 

 

 

 nn yy...yyy
h

T  1210 222
2  

 

Time(sec) 10 15 20 25 30 

Rate(m/s) 15 20 25 30 35 
 

T = (5/2) [ 15 + 2(20) + 2(25) + 2(30) + 

35] T = 500 meters 

 

Time(sec) 10 15 30 60 90 

Rate(m/s) 15 20 25 30 35 

 
T = ½(15+20)(5) + ½(20+25)(15)… 

(uneven intervals...use individual 

trapezoids) 

 

1. Anti-derivatives 

2. U-Substitution 

 

On the Calculator: 

[MATH] [9] 

    

    




b

a

dxxf
ab

fav )(
1

)(

 

 

 

 

  Cuduuu sec tansec  

  Cuduuu csc cotcsc  

  Cuduu cot csc2  

  Cuduu cos sin  

  Cuduu sin cos  

  Cudu tanu sec2  

 

                       Cu
u

du
||ln  

                       Cedue uu  

                     C
a

a
dua

u
u  ln

 

 

  Cuduu |sec|ln tan  

  Cuduu |sin|ln cot  

 

)x('f

)x(f
xx

n

n
nn 1

Units may be (for example): 

     ft / sec      Tickets sold/ hr 

     m/sec        Words typed/min 



 

Integration of 

Logarithmic Forms 

Integration 

Power Rule 

 

Fundamental Theorem 

of Calculus Part I 

(Example Problem) 

Volumes of Revolution 

(Around the x-axis) 

Disks! 

 

Volume by Cross 

Sections 

Volumes of Revolution 

(Around the x-axis) 

Washers! 

 
Interpretation of 


b

dt)t(R

0

  

Interpretation of 


b

dt)t(R

0

  

 
Interpretation of 



b

a

dx)x('f
ab

1  L’Hôpital’s Rule 



1        ,
1

1







 nC
n

u
duu

n
n  

  Cuuuduu ln ln  

 





Cun
n

u
duu

n
n ]1ln)1[(

)1(
lnu 

2

1

 

  Cudu
uu

|ln|ln
ln

1
 

 

 
 
 
 
 



b

a

dxrV 2  

 

If f is the function given by 

 

x

dtttxf

2

4

2  )( , then )('f 2 = 

You are asked to evaluate the derivative of an 

anti-derivative! 

22)2()(' 2  xxxf  

122      24)4()2(' 2 f  

 

 
 
 
 
 

 

b

a

dxrRV 22  

1. Find a formula for 

A(x), a typical cross 

section 

2. Find the limits of 

integration 

3. Integrate A(x) to find 

the volume 

 

 

Suppose R(t) is the rate, in miles per 

minute, that a student rides a bike. 


b

dttR

0

 )(  

Interpretation:  This is the net distance (in 

miles) the student travels during the first b 

minutes. 

Suppose R(t) is the rate, in miles per 

minute, that a student rides a bike. 


b

dttR

0

 )(  

Interpretation:  This is the total distance (in 

miles) the student travels during the first b 

minutes. 

 

Suppose that 







or    

0

0

)(

)(
lim

xg

xf

ax  

then 

)('

)('

)(

)(
lim

ag

af

xg

xf

ax



 

Suppose )x('f  is the rate at which water 

flows into a tank 



b

a

dxxf
ab

)('
1

 

Is the average value of the rate at which the 

water enters the tank (context) in 

gallons/min (units) over the interval [a, b] 

 

r = f(x) 


b

a

dxxAV   )(

R = f(x) 

r = g(x) 



 

Fundamental Theorem 

of Calculus – Part I 

Fundamental Theorem 

of Calculus – Part II 

 
General Power Rule 

& 

Constant Multiple Rule 

For Differentiation 

Derivatives of Inverses 

 

U-Substitution 
Integration of 

sec(u) and csc(u) 

 

Integration of 

Inverse Trig Forms 

Integration of 

Exponential Forms 

 

Integration of 

Exponential/ 

Trigonometric Forms 

Integration by Parts 

Formula 



Assume that f(x) is continuous on [a, b] 

and let F(x) be an antiderivative of f(x) 

on [a, b]. Then 
b

a

aFbFdxxf )()()(  

 

Assume that f(x) is a continuous function on [a, b] 

Then the area function 
x

a

dttfxA )()(  is an 

antiderivative of f(x), that is )()(' xfxA   or 

equivalently  
x

a

xfdttf
dx

d
)()( . Furthermore, 

A(x) satisfies the initial condition A(a) = 0 

 

))(('

1
)('

xgf
xg   

 

Where g(x) is the inverse of f 
-1

(x) 

General Power Rule: 

)(')()( 1 xfxnfxf
dx

d nn   

Constant Multiple Rule: 

)(')( bkxkfbkxf
dx

d
  

 

  Cuuduu |tansec|ln sec  

  Cuuduu |cotcsc|ln csc  

If an integral has the form 

)('))(( xuxuf , then rewrite the 

entire integral in terms of u and its 

differential du = dxxu  )(' : 

  duufdxxuxuf  )( )('))((  

 

  Ceau
a

duue auau )1(
1

2
 

 
 dueu

a

n
eu

a
dueu aunaunaun 11

 

 

 


 C
a

u
du

ua

du 1

22
sin  

 


 C
a

u

a
du

ua

du 1

22
tan

1
  

 

 dxxvxu )(')(  

 dxxvxuxvxu )()(')()(  

 


 Cbubbua
ba

e
dubue

au
au )cossin( sin

22

 

 


 Cbubbua
ba

e
dubue

au
au )sincos( cos

22

 

 




