NEW MILFORD PUBLIC SCHOOLS New Milford, Connecticut

Astronomy College Prep

June 2015

BOE Approved June 2016

New Milford Board of Education

David Lawson, Chairperson Bill Dahl, Vice Chairperson Wendy Faulenbach, Secretary Tammy McInerney, Assistant Secretary Angelia Chastain Robert Coppola David Littlefield Brian McCauley J.T. Schemm

> Superintendent of Schools Mr. Joshua Smith

Acting Assistant Superintendent Dr. Genie Slone

New Milford High School Principal Greg P. Shugrue

> Authors of Course Guide Danielle Ragonnet

New Milford's Mission Statement

The mission of the New Milford Public Schools, a collaborative partnership of students, educators, family and community, is to prepare each and every student to compete and excel in an ever-changing world, embrace challenges with vigor, respect and appreciate the worth of every human being, and contribute to society by providing effective instruction and dynamic curriculum, offering a wide range of valuable experiences, and inspiring students to pursue their dreams and aspirations.

Astronomy College Prep

In this semester course, students will explore the universe and discover unseen worlds. Major topics of this course include constellations and the celestial sphere, motion in space, the solar system, stars, black holes, galaxies, and the search for extraterrestrial life. There is also involvement with the John J. McCarthy Observatory outside the scope of the school day. Prerequisites include the successful completion of Biology or Environmental Earth Science.

Astronomy College Prep Pacing Guide

Unit 1 Foundations of Astronomy	Number of weeks 10
Unit 2: Earth and Planetary Systems	3
Unit 3: Stellar Processes and Systems	4
Unit 4: Frontiers of Astronomy	3

Key for National and State Standards

HS-PS = Next Generation Science Standards: Physical Sciences

- HS-ES = Next Generation Science Standards: Earth Sciences
- HS-ETS = Next Generation Science Standards: Engineering, Technology, and Applications of Science

RST = Common Core Reading Standards for Literacy in Science 6-12

New Milford Public Schools Curriculum Template

Committee Member: Danielle Ragonnet	Course/Subject: Astronomy
Unit Title: Foundations of Astronomy	Grade Level: 11-12
	# of Weeks: 10

	Identify Desired Results
	Next Generation Science Standards and Common Core Standards
6	HS-ESS1-4. Use mathematical or computational representations to predict the
	motion of orbiting objects in the solar system.
6	HS-PS2-1. Analyze data to support the claim that Newton's second law of motion
	describes the mathematical relationship among the net force on a macroscopic
	object, its mass, and its acceleration.
	HS-PS4-1. Use mathematical representations to support a claim regarding
	relationships among the frequency, wavelength, and speed of waves traveling in various media.
8	HS-PS4-2. Evaluate questions about the advantages of using a digital
4	transmission and storage of information.
0	HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that
	electromagnetic radiation can be described either by a wave model or a particle
	model, and that for some situations one model is more useful than the other.
6	HS-PS4-4. Evaluate the validity and reliability of claims in published materials of
	the effects that different frequencies of electromagnetic radiation have when
	absorbed by matter.
6	HS-PS4-5. Communicate technical information about how some technological
	devices use the principles of wave behavior and wave interactions with matter to
	transmit and capture information and energy.
۲	CCSS.ELA-LITERACY.RST11-12.2 Determine the central ideas or conclusions
	of a text; summarize complex concepts, processes, or information presented in a
	text by paraphrasing them in simpler but still accurate terms.
۵	CCSS.ELA-LITERACY.RST11-12.3 Follow precisely a complex multistep
	procedure when carrying out experiments, taking measurements, or performing
	technical tasks; analyze the specific results based on explanations in the text.
69	CCSS.ELA-LITERACY.RST11-12.4 Determine the meaning of symbols, key
	terms, and other domain-specific words and phrases as they are used in a
	specific scientific or technical context relevant to grades 11-12 texts and topics.
-	
0	CCSS.ELA-LITERACY.RST11-12.7 Integrate and evaluate multiple sources of
	information presented in diverse formats and media (e.g., quantitative data,
	video, multimedia) in order to address a question or solve a problem.

 Enduring Understandings Generalizations of desired understanding via essential questions (Students will understand that) Physical laws can be used to explain and predict the motions of objects in the universe. Electromagnetic radiation transmits information about otherwise inaccessible objects. Technologies such as telescopes, satellites and spacecraft have contributed greatly to the knowledge and exploration of the universe. Key scientific discoveries have led to our current understanding of the nature of the universe. 	 Essential Questions Inquiry used to explore generalizations. How are physical laws used to explain and predict the motions of objects in space? How does electromagnetic radiation make it possible to study objects which are too distant to visit? How has technology been used to increase our knowledge and understanding of the universe? What are some of the most important discoveries in astronomy and who are the scientists credited with these discoveries?
	erformances know and be able to do
Students will know:	har and the second s
	e; all of space, time, matter and energy
	sphere surrounding the Earth onto which all
 astronomical objects are projected Celestial coordinates are akin to latitude 	ude and longitude on Earth and are used to
locate objects reliably in the night sky	5
	the sky due to the relative position of the
	astronomical objects have been used for
timekeeping for millennia due to the r	egularity of their motions
 Lunar phases and eclipses are the re Sun, Moon and Earth 	esult of the current relative positions of the
	o not occur every month due to the tilted
	on of a nearby object in relation to a more
	to data maine distances to faravery abiests

- distant background and can be used to determine distances to faraway objects
- Astronomy's ancient roots can be found in structures built all over the globe
- The major contributions to astronomy of Eratosthenes, Copernicus, Galileo and Kepler
- Kepler's Laws of Planetary Motion accurately predict the orbital periods and distances of the planets from the Sun

- Newton's Laws of Motion and Universal Gravitation are essential to our understanding of the universe
- Electromagnetic radiation is a form of energy transfer which propagates through space and is categorized based on wavelength(Gamma Rays, visible light, infrared, etc.)
- Thermal radiation is generated by all objects in the universe and can be used to determine an object's surface temperature using radiation laws (Wien's Law, Stefan's Law) and a blackbody curve
- The Doppler Effect is the change in frequency of a wave for an observer moving relative to its source; this change in frequency can be measured and used to determine line of sight velocity of a radiating object
- Spectroscopy is used to study the nature of radiating objects and many physical properties of radiating objects can be determined by analyzing their spectra(composition, temperature, line of sight velocity, etc.)
- Kirchhoff's Laws distinguish the different varieties and origins of spectra
- Telescopes are designed to gather and focus light from dim or distant objects and come in many varieties based on the type of electromagnetic radiation they are designed to collect
- Advantages and disadvantages of the various types of telescopes (optical, radio, etc.)
- The atmosphere absorbs most types of electromagnetic radiation so some telescopes must be located in orbit
- Analyzing the full spectrum of electromagnetic radiation from an object provides valuable insight about processes which are invisible

Students will be able to do the following:

- Analyze and evaluate journal articles which address various astronomical topics and write concise yet accurate article summaries
- Explain the concept of the celestial sphere and the use of angular measurement to locate objects in the sky
- Describe how and why the Sun, Moon and stars appear to change position from night to night and month to month
- Explain how clocks and calendars are linked to Earth's rotation and orbit around the Sun
- Show how the relative motions of Earth, the Sun and the Moon lead to lunar phases and eclipses
- Explain the simple geometric reasoning that allows astronomers to measure the distances and sizes of otherwise inaccessible objects
- Apply what they know about celestial coordinates to use a planisphere to locate objects in the sky
- Apply their knowledge of the relative positions of sun, moon and Earth to

accurately construct a lunar phase diagram

- Summarize the role of Renaissance science in the history of astronomy
- Create a biographical presentation outlining the accomplishments of a notable astronomer
- State Kepler's laws of planetary motion and explain how Kepler's laws allow us to construct a scale model of the solar system
- State Newton's laws of motion and universal gravitation and explain how they account for Kepler's laws
- Explain how the law of gravitation enables us to measure the masses of astronomical bodies
- Re-create the experiment conducted by Eratosthenes which accurately measured the circumference of the Earth around 200BC
- Validate Kepler's Third Law of Planetary Motion by applying modern values for the orbital periods and distances of the planets in the solar system
- Discuss the nature of electromagnetic radiation and how radiation transfers energy and information through interstellar space
- Describe the characteristics of spectra and the conditions under which they are produced and explain the kinds of information that can be obtained by analyzing the spectra of astronomical objects
- Observe and draw the emission spectra of several gases and use the results to predict the composition of overhead fluorescent lamps
- Sketch and describe the basic designs of the major types of optical telescopes
- Describe how Earth's atmosphere affects astronomical observations and discuss some of the current efforts to improve ground-based astronomy
- Discuss the advantages and disadvantages of radio astronomy compared with optical observations
- Explain why some observations are best done from space, and discuss the advantages and limitations of space-based astronomy

ತ್ವಾಸೋ ಜ	김 해석 문		Character Attributes		
۲	Respect			197 - SWELLER	
۲	Responsibility				
0	Honesty				
۲	Integrity				
۲	Cooperation				
۲	Perseverance				
g Ayrine	아이는 것 같은 아이가 많은 것 같아.	algan paga sitah	Technology Competer	ncies	, 全國 후 가지 한 바람이라면 한 것
6	Use of refractin	g and reflect	ting telescopes		
۲	Use of spectros	scopes			

• Word processing, spreadsheet and presentation software

 Develop Teaching eaching Strategies: Provide guided note sheets when necessary Cooperative group work Modeling of objects and systems Unit outlines and study guides Multimedia presentations of material Questioning techniques (no opt out, right is right, etc.) 	 Learning Activities: Astronomy Article Summaries - students read journal articles which address various astronomical topic and write concise yet accurate article summaries Using a Planisphere Lab - students use what they know about celestial coordinates and a planisphere to locate objects in the sky Lunar Phases Lab - students use their knowledge of the relative positions of sun, moon and Earth to accurately construct a lunar phase diagram Parallax Lab - students use the principle of parallax to indirectly measure the length of their outstretched arm Eratosthenes Measures Earth Lab - students re-create the experiment conducted by Eratosthenes which accurately measured the circumference of the Earth around 200BC Kepler's Third Law Lab - students use modern values for the orbital periods and distances of the planet in the solar system to validate Kepler's Third Law of Planetary Motion. Then Kepler's 3rd law is used to predict the mass of Cygnus
	 X-1, the first black hole discovered in the Milky Way. Spectroscopy Lab - students observe and draw the emission spectra of several gases and use their results to predict the

	composition of overhead
2 V	fluorescent lamps
	 In-class Trip to Observatory -
	students will be introduced to the
	observatory's facilities and be given
	an opportunity to view the Sun in
	the telescope

Assess	ments
Performance Task(s) Authentic application to evaluate student achievement of desired results designed according to GRASPS (one per marking period)	Other Evidence Application that is functional in a classroom context to evaluate student achievement of desired results
Goal: To create a short presentation showcasing the life and discoveries of a prominent astronomer Role: A councilor at astronomy camp Audience: 6th grade campers Situation: Your responsibility is to get the campers excited about astronomy Product or Performance: Short presentation on a prominent astronomer to show to a group of 6th grade campers before they use binoculars and telescopes on a clear, dark night. Standards for Success: Rubric	 Quizzes Unit Tests Formative Assessments Lab Analysis Questions Article Summaries Projects and Presentations Questioning and Discussion
Suggested	Resources
 Chaisson, Eric, and S. McMillan. Astronom Pearson / Addison Wesley, 2005. Print. Hirshfeld, Alan W. Astronomy: Activity and Jones & Bartlett Pub, 2008. Print. 	

New Milford Public Schools Curriculum Template

	· · · · · · · · · · · · · · · · · · ·		
Committee Member: Danielle Ragonnet	Course/Subject: Astronomy		
Unit Title: Earth and Planetary Systems	Grade Level: 11-12		
	# of Weeks: 3		
	sired Results		
and the second	ards and Common Core Standards		
motion of orbiting objects in the solar	•		
 HS-ESS1-6. Apply scientific reasoning 	-		
materials, meteorites, and other plan Earth's formation and early history.	etary surfaces to construct an account of		
	ate the changes in the composition of the		
·	released during the processes of fission,		
	he claim that Newton's second law of motion		
	hip among the net force on a macroscopic		
object, its mass, and its acceleration			
	 HS-PS2-4. Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic 		
forces between objects.	predict the gravitational and electrostatic		
-	reliability of claims in published materials of		
•	of electromagnetic radiation have when		
• HS-ETS1-1. Analyze a major global	challenge to specify qualitative and		
quantitative criteria and constraints for solutions that account for societal needs and wants.			
	omplex real-world problem by breaking it		
down into smaller, more manageable	e problems that can be solved through		
engineering.			
	complex real-world problem based on		
•	account for a range of constraints, including		
	s, as well as possible social, cultural, and		
environmental impacts.			
	Determine the central ideas or conclusions		
	ots, processes, or information presented in a		
text by paraphrasing them in simpler	but still accurate terms.		
CCSS.ELA-LITERACY.RST11-12.3	Follow precisely a complex multistep		
procedure when carrying out experin	nents, taking measurements, or performing		
technical tasks; analyze the specific	results based on explanations in the text.		

- CCSS.ELA-LITERACY.RST11-12.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
- CCSS.ELA-LITERACY.RST11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
- CCSS.ELA-LITERACY.RST11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

 Enduring Understandings Generalizations of desired understanding via essential questions (Students will understand that) Physical laws can be used to explain and predict the motions of objects in the universe. Electromagnetic radiation transmits information about otherwise inaccessible objects. Technologies such as telescopes, satellites and spacecraft have contributed greatly to the knowledge and exploration of the universe. Studying other objects and systems in the universe provide valuable information about the formation, evolution and fate of Earth. According to the latest findings, the solar system formed approximately 4.6 billion years ago from a cloud of gas and dust. If life does exist elsewhere in the universe, it will form within the constraints of physical, chemical and biological laws. 	 Essential Questions Inquiry used to explore generalizations How are physical laws used to explain and predict the motions of objects in space? How does electromagnetic radiation make it possible to study objects which are too distant to visit? How has technology been used to increase our knowledge and understanding of the universe? What methods make it possible to determine the evolutionary stages and ages of the Earth, Sun and universe? How is Earth similar to and different from the other planets in the solar system?
--	--

지원 · · · · · 지원 · · · ·		erformances know and be able to do		
Stude	ents will know:	a and a second secon		
۲	 Planets are classified based on their physical characteristics Physical and orbital properties of the major non-planetary components of the solar system 			
6				
۲				
0	-	ears ago according to the latest evidence		
Stude	ents will be able to do the following:			
6	Summarize the basic differences betw	ween the terrestrial and Jovian planets		
\$	Identify and describe the major non-p Describe some satellites and spacec	lanetary components of the solar system raft missions that have contributed		
	significantly to our knowledge of the s	solar system		
۵	Discuss the origin of the solar system	-		
6	Assemble a scale model of the solar			
0	Use computer simulation software to	•		
	findings to discuss how the age of the	•		
0	Create a plan for building a resort hot			
	system	2		
		Attributes		
8	Respect			
۲	Responsibility			
6	Honesty Integrity			
6	Cooperation			
	Perseverance			
877 명원		y Competencies		
9 9	Computer modeling of radioactive de Word processing, spreadsheet and p			
	Develop Teaching	and Learning Plan		
Teach	ning Strategies:	Learning Activities:		
۲	Provide guided note sheets when	 Astronomy Article Summaries - 		
	necessary	students read journal articles which		
۲	Cooperative group work	address various astronomical topics		
0	Modeling of objects and systems	and write concise yet accurate		
	Unit outlines and study guides	article summaries		
\$	onal outlines and study guides	article summanes		
\$	Multimedia presentations of	 In-Class Visit to Observatory - 		

Assess	sments
Performance Task(s) Authentic application to evaluate student achievement of desired results designed according to GRASPS (one per marking period)	Other Evidence Application that is functional in a classroom context to evaluate student achievement of desired results
Goal: To design an exciting resort at a unique destination in the solar system Role: Using your knowledge of the destination to create a fun, exciting resort and to present you ideas to your boss in a convincing manner Audience: Your boss and the board of directors Situation: The board wants to go ahead with plans to build a resort and you must convince them that your resort is the one they should choose. Product or Performance: A sales pitch presentation showcasing your resort design Standards for Success: Rubric	 Quizzes Unit Tests Formative Assessments Lab Analysis Questions Article Summaries Projects and Presentations Questioning and Discussion

	Suggested Resources
0	Chaisson, Eric, and S. McMillan. Astronomy Today. 5th ed. San Francisco, CA
Pe	earson / Addison Wesley, 2005. Print.
	Hirshfeld, Alan W. Astronomy: Activity and Laboratory Manual. Sudbury, Mass
	nes & Bartlett Pub, 2008. Print.
8	···· ··· ··· ··· ··· ··· ··· ··· ··· ·

New Milford Public Schools Curriculum Template

Committee Member: Danielle Ragonnet Jnit Title: Stellar Processes and Systems	Course/Subject: Astronomy Grade Level: 11-12 # of Weeks: 4
	ired Results
	rds and Common Core Standards
•	I on evidence to illustrate the life span of the
sun and the role of nuclear fusion in t eventually reaches Earth in the form	•••
	ideas about the way stars, over their life
cycle, produce elements.	liceas about the way stars, over their me
2 I	te the changes in the composition of the
•	eleased during the processes of fission,
fusion, and radioactive decay.	
•	ne claim that Newton's second law of motion
describes the mathematical relations	hip among the net force on a macroscopic
object, its mass, and its acceleration.	
	entations of Newton's Law of Gravitation
	predict the gravitational and electrostatic
forces between objects.	stodiet ine gravitational and electroctatio
-	adal to calculate the change in the operation
•	nodel to calculate the change in the energy
of one component in a system when	
component(s) and energy flows in an	-
 HS-PS4-1. Use mathematical representation 	
	vavelength, and speed of waves traveling in
various media.	
 HS-PS4-2. Evaluate questions about 	a b
transmission and storage of informati	
	formation about how some technological
· ·	ehavior and wave interactions with matter to
transmit and capture information and	
• HS-ETS1-1. Analyze a major global of	
•	or solutions that account for societal needs
and wants.	
 HS-ETS1-2. Design a solution to a co 	omplex real-world problem by breaking it
down into smaller, more manageable	problems that can be solved through
engineering.	
• HS-ETS1-3. Evaluate a solution to a	complex real-world problem based on
	account for a range of constraints, including
•	, as well as possible social, cultural, and

environmental impacts.

- CCSS.ELA-LITERACY.RST11-12.2 Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.
- CCSS.ELA-LITERACY.RST11-12.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
- CCSS.ELA-LITERACY.RST11-12.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
- CCSS.ELA-LITERACY.RST11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
- CCSS.ELA-LITERACY.RST11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

Enduring Understandings Generalizations of desired understanding via essential questions (Students will understand that)	Essential Questions Inquiry used to explore generalizations
 Electromagnetic radiation transmits information about otherwise inaccessible objects. Technologies such as telescopes, satellites and spacecraft have contributed greatly to the knowledge and exploration of the universe. Studying other objects and systems in the universe provide valuable information about the formation, evolution and fate of Earth. The process of nucleosynthesis in stars is responsible for the creation of the heavier elements currently found in the universe. Stars of different masses have several key evolutionary differences and end their lives in manners 	 How are physical laws used to explain and predict the motions of objects in space? How does electromagnetic radiation make it possible to study objects which are too distant to visit? How has technology been used to increase our knowledge and understanding of the universe? What methods make it possible to determine the evolutionary stages and ages of the Earth, Sun and universe? What is meant when it is said we are all made of star stuff? Is our Sun a "typical" star?

19

Seco

	specific to their starting mass.					
	Key scientific discoveries have led		(0)	25	82	204
	to our current understanding of the					
	nature of the universe.					
۵	No system is eternal; planetary					
	systems, stars and galaxies all					
	begin, evolve and die leaving					
	materials to be recycled into new					
	systems.					
		erformances know and be able to do				
Stude	ents will know:				- <u></u>	-
•	How the Sun generates energy throu	gh nuclear fusion i	t its co	re		

- Stellar magnitude and color index allow astronomers to understand the physical properties of stars and predict their evolution
- Stars of different masses have very different evolutions and end their lives in a variety of ways (white dwarf, neutron star, black hole)
- Galaxies are gargantuan collections of stellar and non-stellar matter
- Galaxies are categorized according to Hubble's system of classification; the Milky Way is classified as a spiral galaxy
- Galaxies with active cores produce measurable phenomena such as guasars which are the result of voracious super-massive black holes in their cores

Students will be able to do the following:

- Describe the overall properties of the Sun and discuss how the Sun generates energy through nuclear fusion in its core
- Explain how the stellar magnitude system is used to provide a baseline for astronomical studies
- Describe how the color index of a star is determined and what information it provides about the physical properties of a star
- Compare and contrast how stars of different masses are created, evolve and die
- Use the Hertzsprung-Russell diagram to plot physical characteristics of stars, identify where the main sequence is located and explain why stars evolve off the main sequence
- Explain the nature and origin of pulsars
- Describe how black holes are formed and their effects on matter and radiation in their vicinity
- Describe the overall structure of the Milky Way Galaxy
- Describe the basic properties of the main types of normal galaxies and specify the basic differences between active and normal galaxies
- Use knowledge of observation protocols and imaging software to conduct an investigation and report on it
- Explore the concept of stellar magnitude and use it to predict distances of stars in

the Milky Way	
	e which determined the Andromeda Galaxy
(and others) were located well outsid	-
	Attributes
 Respect 	Autoucs
 Responsibility 	
 Honesty 	
Integrity	
 Cooperation 	
Perseverance	
	0
 Use of reflecting and refracting telescond 	y Competencies
 Imaging software for processing teles 	
 Computer-based spreadsheet and gr 	
 CCD (Charged Coupled Device) Can 	• •
 Word processing, spreadsheet and p 	
	and Learning Plan
Teaching Strategies:	Learning Activities:
Provide guided note sheets when	 Astronomy Article Summaries -
necessary	students read journal articles which
 Cooperative group work 	address various astronomical topics
 Modeling of objects and systems 	and write concise yet accurate
 Unit outlines and study guides 	article summaries
 Multimedia presentations of 	
material	 In-Class Visit to Observatory - students will be introduced to
Questioning techniques (no opt out,	observatory's imaging software and
right is right, etc.)	observation protocols
	 Night-time Visit to Observatory -
	students will use knowledge of
	observation protocols and imaging
	software to conduct an investigation
	and report on it
	Stellar Magnitude Lab - students
	explore the concept of stellar
	magnitude and use it to predict
	distances of stars in the Milky Way
	 H-R Diagram Lab - students plot
	values for the nearest stars and
	brightest stars in the sky and use
	their results to make generalizations
	about stellar properties

	Realm of Spiral Nebulae Lab -
忠徳 の	students re-create the experiments
	by Hubble which determined the
	Andromeda Galaxy (and others)
	were located well outside the Milky
	Way

Assess	ments
Performance Task(s) Authentic application to evaluate student achievement of desired results designed according to GRASPS (one per marking period) Goal: Use the observatory to conduct a	Other Evidence Application that is functional in a classroom context to evaluate student achievement of desired results
scientific investigation and write a report on your findings for publication in a well- known scientific journal Role: Astronomer Audience: Scientific journal Situation: You will choose a relevant topic to research at the observatory and communicate your methods and findings in a formal research paper. Product or Performance: A formal research paper outlining methods and findings Standards for Success: Rubric	 Formative Assessments Lab Analysis Questions Article Summaries Projects and Presentations Questioning and Discussion
Suggested	Resources
Pearson / Addison Wesley, 2005. Print.	onomy Today. 5th ed. San Francisco, CA: and Laboratory Manual. Sudbury, Mass:

New Milford Public Schools Curriculum Template

Committee Member: Danielle Ragonnet Unit Title: Frontiers of Astronomy	Course/Subject: Astronomy Grade Level: 11-12 # of Weeks: 3		
Identify Desired Results			
	lards and Common Core Standards		
astronomical evidence of light spec	•		
composition of matter in the univers			
•	sentations of Newton's Law of Gravitation		
forces between objects.	I predict the gravitational and electrostatic		
• HS-PS3-1. Create a computational	model to calculate the change in the energy		
of one component in a system wher			
component(s) and energy flows in a			
	sentations to support a claim regarding		
	wavelength, and speed of waves traveling in		
various media.			
 HS-PS4-2. Evaluate questions about the new instance of information 	0 0 0		
 transmission and storage of informa HS-PS4-5. Communicate technical 	information about how some technological		
	pehavior and wave interactions with matter to		
•	l challenge to specify qualitative and		
	for solutions that account for societal needs		
and wants.			
	a complex real-world problem based on		
	t account for a range of constraints, including		
•	cs, as well as possible social, cultural, and		
environmental impacts.			
	1 Cite specific textual evidence to support		
	xts, attending to important distinctions the		
author makes and to any gaps or in			
	2 Determine the central ideas or conclusions		
	epts, processes, or information presented in a		
text by paraphrasing them in simple	r but still accurate terms.		
	3 Follow precisely a complex multistep		
	ments, taking measurements, or performing		
technical tasks; analyze the specific	results based on explanations in the text.		
CCSS FLA-LITERACY RST11-12 A	Determine the meaning of symbols key		

• CCSS.ELA-LITERACY.RST11-12.4 Determine the meaning of symbols, key

terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to *grades 11-12 texts and topics*.

- CCSS.ELA-LITERACY.RST11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
- CCSS.ELA-LITERACY.RST11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.
- CCSS.ELA-LITERACY.RST11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

Enduring Understandings Generalizations of desired understanding via essential questions (Students will understand that)	Essential Questions Inquiry used to explore generalizations
 Physical laws can be used to 	 How are physical laws used to
explain and predict the motions of	explain and predict the motions of
objects in the universe.	objects in space?
 Electromagnetic radiation transmits 	 How does electromagnetic radiation
information about otherwise	make it possible to study objects
inaccessible objects.	which are too distant to visit?
 Technologies such as telescopes, 	 How has technology been used to
satellites and spacecraft have	increase our knowledge and
contributed greatly to the	understanding of the universe?
knowledge and exploration of the	What methods make it possible to
universe.	determine the evolutionary stages
 Studying other objects and systems 	and ages of the Earth, Sun and
in the universe provide valuable	universe?
information about the formation,	What is the fate of the universe?
evolution and fate of Earth.	What are some of the most
 Key scientific discoveries have led 	important discoveries in astronomy
to our current understanding of the	and who are the scientists credited
nature of the universe.	with these discoveries?
 If life does exist elsewhere in the 	
universe, it will form within the	
constraints of physical, chemical	
and biological laws.	
 According to the latest findings, the 	10
universe formed approximately 13.7	

 billion years ago in the Big Bang and has been expanding ever the since. No system is eternal; planetary eventees etern and galaxies all 			
systems, stars and galaxies all begin, evolve and die leaving			
materials to be recycled into new			
systems.			
Systems.			
Students will know:	know and be able to do principle; the universe is homogeneous and		
isotropic, which means there is no center and no edge			
	y 13.7 billion years ago and the universe		
has been expanding every since			
universe is accelerating in its expans	and Dark Energy have indicated that the ion and will likely continue to expand forever out the cosmos but no evidence of life		
 I he chemistry of life is found through elsewhere has been discovered yet 			
 The Drake Equation speculates on the potential number of intelligent, 			
technological civilizations which migh	t exist in the Milky Way		
 Hundreds of exoplanets have been d techniques 	iscovered since the 1990s using a variety of		
Students will be able to do the following:			
 State the cosmological principle and 			
- Evaluin how the age of the universe	· · · ·		
 Explain how the age of the universe i 	s determined nether the universe will expand forever		

- Model the expansion of the universe using Hubble's Law
- Summarize the process of cosmic evolution as it's currently understood
- Evaluate the chances of finding life elsewhere in the solar system
- Summarize how we estimate the number of advanced civilizations that might exist in the galaxy
- Discuss some of the techniques we might use to search for and communicate with extraterrestrials
- Explore methods used to detect exoplanets

Character Attributes

Respect

- Responsibility
- Honesty
- Integrity
- Cooperation
- Perseverance

 Word processing, spreadsheet and p Database search engine use for rese 	
Develop Teaching	and Learning Plan
 Feaching Strategies: Provide guided note sheets when necessary Cooperative group work Modeling of objects and systems Unit outlines and study guides Multimedia presentations of material Questioning techniques (no opt out, right is right, etc.) 	 Learning Activities: Astronomy Article Summaries - students read journal articles which address various astronomical topics and write concise yet accurate article summaries Hubble's Law Lab - students use Hubble's Law to model the expansion of the universe Life in the Universe Activity - students will be introduced to the field of astrobiology and use certain physical laws to predict the type of life likely to be found in different environments Exoplanet Activity - students will explore methods used to detect exoplanets and write a profile on one exoplanetary system

Assessments	
Performance Task(s) Authentic application to evaluate student achievement of desired results designed according to GRASPS (one per marking period)	Other Evidence Application that is functional in a classroom context to evaluate student achievement of desired results.
Goal: Write an argumentative essay about the use of government funds to search for the existence of life elsewhere in the universe. Role: Writer for the school paper Audience: High school students Situation: You've been asked to write an essay outlining the opposing points of view regarding the use of public funds to research the existence of extraterrestrial life. Product or Performance: An argumentative essay that takes a stance in	 Quizzes Unit Tests Formative Assessments Lab Analysis Questions Article Summaries Projects and Presentations Questioning and Discussion

the debate about the use of government funds to search for the existence of life elsewhere in the universe. Standards for Success: Rubric		
Suggested Resources		
Pearson / Addison Wesley, 2005. Print.	onomy Today. 5th ed. San Francisco, CA: / and Laboratory Manual. Sudbury, Mass:	

-47.