
I. First you will need to find some cans. How many depends on how you are going to use this resource. If you would like a few groups at a time to be able to use this during Math Centers, you will need 2-4 cans. If you want to have it available as an independent activity, you may want to make 5-6.
**I recommend regular sized tennis ball cans or "Pringles" potato chip cans. Don't have any? Try sending out an email to the other teachers at your school. You may be surprised at the response you get! ©
2. Based on the size can you have chosen, pick the cover size that fits best (two sizes are included). Wrap the cover around the can, gluing it down as you go. You may want to laminate the cover first for a long lasting resource, and secure it to the can with clear packing tape (this seems to work best).
3. Print the cards. There are two sets of cards to choose from. The first set is multiple choice, and the second set is short answer. You can choose to use only one type of question, or mix the two types for more variety. You also have the option of using QR codes for students to check their answers. (Note: be sure to use only one of each card number if you choose to mix the types of questions.)
**For a long lasting resource, you will want to laminate the cards, or print them on cardstock!
4. Put the cut-out cards into the can, and put the lid on! That's it! You now have a great new resource for your classroom!

See "Using this Resource" for ideas of how you can use this with your students!
 \\ \title{
Using This Resource
} \\ \title{
Using This Resource
}

As a group math center/activity
Place this "I Can" game out as one of your math centers. In groups of 2 or more, students can play this game against one another by seeing who can collect the most cards. To collect a card, students must answer the question correctly. If they check their answer and it is incorrect, another player can attempt to answer the question correctly and keep the card for themselves. If a student pulls an "I Can" card, they can add this to their pile of cards as a bonus, and pull another card to solve.

As an independent center/activity

Students will pull a card from the can and solve it. They should record their answers on the "My Answers" sheet. When they are finished, they can check their answers using the answer key. It is a good idea to offer a reward/incentive for completing the set of cards, and/or mastering a certain percentage.

As a progress monitoring tool

When students complete this activity independently, have them keep track of their progress using the "Checklist" provided (or you can use the checklist and check their work yourself). You can then use this checklist to see if the student has mastered the focus skill. You can also use this information to help you determine if, and in what area, further instruction is needed.

CCSS.MATH.CONTENT.3.NF.A. 1

Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$.
CCSS.MATH.CONTENT.3.NF.A. 2 (ABB)
Understand a fraction as a number on the number line; represent fractions on a number line diagram.
CCSS.MATH.CONTENT.3.NF.A. 3 (A,B,C,D)
Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.

- Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
- Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.
- Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=3 / 1$; recognize that $6 / 1=6$; locate $4 / 4$ and 1 at the same point of a number line diagram.
Compare two fractions with the same numerator or the same denominator by reasoning about their size.
Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, egg., by using a visual fraction model.

By Yourself

Solve each problem, and use the "I Can" checklist to keep track of your progress. See how many problems you can get correct!

With a Partner

Pull one card from the can and solve it. If you get the problem correct, keep the cand. If you get the problem wrong, the other player can steal the card by trying to answer it correctly. If you pull an "I Can" cand, add it to your pile as a bonus cand and pull another card. The player with the most cards, WINS!

What does the numerator stand for in the fraction? 1 A. The number of pieces that C. The number of equal pieces are left over. we have.

4 B. The tot pieces.

D. The size of one piece.

Fractions

What $\overline{\text { doen }}$ the \bar{d} enominator stand $\overline{\text { for }}$ in the \bar{f} raction?
1 A. The number of pieces that C. The number of equal pieces are left over.
we have.
4 B. The total number of equal D. The size of one piece. pieces.

Fractions

What fraction of the figure is shaded?
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{3}{3}$
D. $\frac{2}{4}$

Fractions

What fraction of the figure is shaded?

14
$\begin{array}{llll}\text { A. } \frac{3}{5} & \text { B. } \frac{2}{5} & \text { C. } \frac{4}{5} & \text { D. } \frac{2}{3}\end{array}$
Fractions

What fraction of the figure is shaded?
$\begin{array}{llll}\text { A. } \frac{3}{8} & \text { B. } \frac{3}{5} & \text { C. } \frac{5}{8} & \text { D. } \frac{4}{8}\end{array}$

What fraction of the figure is shaded?

$$
\begin{array}{llll}
\text { A. } \frac{4}{4} & \text { B. } \frac{1}{3} & \text { C. } \frac{1}{4} & \text { D. } \frac{3}{4}
\end{array}
$$

Susie has a box of 12 crayons. She takes 5 of them out of the box. What fraction of the	A. $\frac{6}{12}$	C. $\frac{8}{12}$
crayons are left in the box?	$\frac{5}{12}$	D. $\frac{7}{12}$

Fractions

Fractions

Abstract

Emily's mom made her \bar{a} ham sandwich for lunch today. She cut it A. $\frac{3}{4} \quad$ C. $\frac{4}{2}$ into 4 equal pieces. If Emily eats two pieces, what fraction of her sandwich did she eat? B. $\frac{2}{4}$ D. $\frac{1}{4}$

Cody had 8 pieces of a candy bar
He gave his best friend 3 pieces. What fraction of the candy bar does Cody have left?
B. 4
D. 3 $\overline{8} \quad \overline{8}$

Fractions

Where should the fraction $\frac{3}{4}$ be placed on the number line?

Where should the fraction $\frac{3}{8}$ be placed on the number line?

Where should the fraction $\frac{1}{6}$ be placed on the number line?

Where should the fraction $\frac{2}{3}$ be placed on the number line?

- - - Which fraction is shown on the number line?
A. $\frac{1}{3}$
C. $\frac{2}{2}$
\qquad
B. $\frac{2}{3}$
D. $\frac{1}{2}$ Froctions

Which fraction is shown on the number line？

A．$\frac{9}{12}$
C．$\frac{9}{13}$

12 Fractions
－－Which fraction is shown on the number line？
A．$\frac{6}{8}$
C．$\frac{5}{7}$
D． 2
$\overline{7}$ Fractions

－－－－－－－－－－－－－－－－－－－
Which $\bar{f} r$ action is shown on the number line？
A．$\frac{1}{5}$
C．$\frac{2}{6}$
B．$\frac{2}{5}$
D． 5

Fractions

Which number line is partitioned into eighths？

ーーーーーーーーーーーーーーーーーーーーーーーーー Which number line is partitioned into sixths？

What is the missing number?

| 0 | $\frac{\mathbf{1}}{\mathbf{6}}$ | $\frac{\mathbf{7}}{\mathbf{6}}$ | $\frac{\mathbf{3}}{\mathbf{6}}$ | $\frac{\mathbf{4}}{\mathbf{6}}$ | $\frac{\mathbf{5}}{\mathbf{6}}$ | \mid | A. 3 | C. 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | B. 0 | D. 1 | | |

What is the missing number?
A. 3 C. 5
B. 2
D. 4

Fractions

| 1 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ | | | $\frac{1}{2}$ | | | | |
| $\frac{1}{5}$ | $\frac{1}{5}$ | | | | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ |
| $\frac{1}{8}$ |

Name a fraction equivalent to $\frac{4}{8}$.
A. $\frac{1}{2}$
C. $\frac{2}{8}$
B. 2
D. 3

Name a fraction
A. $\frac{2}{4}$
C. $\frac{5}{8}$ equivalent to $\frac{1}{3}$.
B. $\frac{3}{4}$
D. $\frac{2}{6}$ 27
\qquad Name a fraction
A. $\frac{3}{4}$
C. $\frac{1}{3}$ equivalent to $\frac{4}{6}$.
B. $\frac{2}{3}$
D. $\frac{2}{4}$Name a fraction
A. $\frac{1}{4}$
C. $\frac{1}{2}$ equivalent to $\frac{2}{4}$.
B. $\frac{4}{6}$
D. $\frac{3}{8}$

Name a fraction
A. $\frac{6}{8}$
C. $\frac{1}{3}$ equivalent to $\frac{3}{4}$.
B. $\frac{6}{10}$
D. $\frac{4}{8}$
Which fraction is
A. $\frac{3}{4}$
C. $\frac{5}{1}$ equivalent to one?
B. $\frac{4}{4}$
D. $\frac{4}{5}$

Which fraction is A. $\frac{2}{2} \quad$ C. $\frac{5}{1}$ equivalent to one?
 B. $\frac{1}{4}$
 D. 2
 $\overline{1}$

Fractions
32

$$
\begin{array}{cll}
\text { Which fraction is } & \text { A. } \frac{3}{4} & \text { C. } \frac{8}{8} \\
\text { equivalent to one? } & \text { B. } \frac{5}{1} & \text { D. } \frac{6}{2}
\end{array}
$$

Fracas
$\square \square \square$

$$
\begin{array}{cll}
\text { Which fraction is } & \text { A. } \frac{1}{3} & \text { C. } \frac{3}{1} \\
\text { equivalent to three? } & \text { B. } \frac{3}{3} & \text { D. } \frac{2}{3}
\end{array}
$$

Fractions
134
Which fraction is A. $\frac{5}{5}$
C. $\frac{1}{5}$ equivalent to five?
B. $\frac{5}{1}$
D. 4
$\overline{5}$

Compare the fractions using $>,<$, or $=$.
136 A. >
B. $<$
c. $=$

3
$\overline{6}$

Fractions

Compare the $\overline{\text { fractions }} \overline{\text { using }}>,<\overline{<}$, or $=$.

Fractions
38
A. >

$\frac{2}{3}$
 Compare the fractions using $>,<$, or $=$.

$140 \quad$ A. $>\quad$ B. $<\quad$ C. $=8$

3
Compare the fractions using $>,<$, or $=$

What does the numerator stand for in the fraction? 1 A. The number of pieces that C. The number of equal pieces are left over.
we have.
$\overline{4}$ B. The total number of equal D. The size of one piece. pieces.

Fractions

What $\overline{\text { does }}$ the $\overline{\text { den }} \overline{\text { ominator }}$ stand $\overline{\text { for }}$ in the $\overline{\text { fraction }}$?
뭄ㅁㅇㅇ 1 . The number of pieces that C. The number of equal pieces are left over.
we have.

为品 What fraction of the figure is shaded?

$$
\text { A. } \frac{3}{8} \quad \text { B. } \frac{3}{5} \quad \text { C. } \frac{5}{8} \quad \text { D. } \frac{4}{8}
$$

뭄

Susie has a box of 12 crayons.
She takes 5 of them out of the box. What fraction of the
Crayons are left in the box? cray

Fractions

Emily's mom ma ide her \bar{a} ham sandwich for lunch today. She cut $\begin{array}{lll}\text { A. } \frac{3}{4} & \text { C. } \frac{4}{2}\end{array}$

Fractions

it into 4 equal pieces. If Emily eats two pieces, what fraction of her sandwich did she eat?

Cody had 8 pieces of a candy
bar. He gave his best friend 3
Cody had 8 pieces of a candy
bar. He gave his best friend 3 pieces. What fraction of the candy bar does Cody have left?

A. $\frac{8}{3}$	C. $\frac{5}{8}$
B. $\frac{4}{8}$	D. $\frac{3}{8}$

Fractions

Jason has 5 books about animals. 3 of the books are about tigers, and the rest are about insects. What fraction of the books are about
B.
D. 4 $\overline{5}$

Where should the fraction $\frac{3}{4}$ be placed on the number line？
\qquad

Where should the fraction $\frac{3}{8}$ be placed on the number line？

Where should the fraction $\frac{1}{6}$ be placed on the number line？

Where should the fraction $\frac{2}{3}$ be placed on the number line？

14

Fractions
－ Which $\overline{\text { fraction }} \overline{\text { is }} \overline{\text { shown }} \overline{\text { on }}$ the number line？

A．$\frac{1}{3}$
C．$\frac{2}{2}$
15
B．$\frac{2}{3}$
D．$\frac{1}{2}$ Fractions

Which number line is partitioned into eighths?

Which number line is partitioned into sixths?

$B<$

$C<1$

What is the missing number?

21
Fractions

Fractions

What is the missing number?

	$\frac{1}{4}$	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{?}{5}$
0	$\frac{1}{5}$	$\frac{1}{5}$		

A. 3
C. 5
B. 2
D. 4

© One Stop Teacher Shop

1									
$\frac{1}{2}$					$\frac{1}{2}$				
$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$					
126	$\frac{1}{8}$								

Name a fraction equivalent to $\frac{4}{8}$. $\begin{array}{ll}\text { A. } \frac{1}{2} & \text { C. } \frac{2}{8} \\ \text { B. } \frac{2}{5} & \text { D. } \frac{3}{5} \\ -\boldsymbol{-} & =-\boldsymbol{-}\end{array}$

Fractions

27
Name a fraction
A. $\frac{2}{4}$
C. $\frac{5}{8}$
equivalent to $\frac{1}{3}$.
B. $\frac{3}{4}$
D. $\frac{2}{6}$

Fractions

Name a fraction	A. $\frac{1}{4}$	C. $\frac{1}{2}$
equivalent to $\frac{2}{4}$	B. $\frac{4}{6}$	D. $\frac{3}{8}$

Fractions
29
C. $\frac{1}{3}$
D. $\frac{4}{8}$
Name a fraction
A. $\frac{6}{8}$
equivalent to $\frac{3}{4} \quad$ B. $\frac{6}{10}$

-

Fractions
© One Stop Teacher Shop
Which fraction is A. $\frac{3}{4} \quad$ C. $\frac{5}{1}$ equivalent to one?
B. 4
D 4
$|3|-\ldots-\ldots-\ldots-\ldots-\ldots-\infty-\ldots-\ldots$ Fractions

Fracas

Which fraction is	A. $\frac{1}{3}$	C. $\frac{3}{1}$
equivalent to three?	B. $\frac{3}{3}$	D. $\frac{2}{3}$

Fractions
134

Compare the fractions using $>,<$, or $=$.

Fractions
136 A. $>\quad$ B. $<\quad$ C. $=4$
Factions

Fractions
Compare the fractions using $>,<$, or $=$
38
A. >

$\frac{2}{3}$

Fractions

$\square \quad \square$

1 What does the numerator $\overline{4} \quad$ stand for in the fraction?

What fraction of the figure is shaded?

Susie has a box of 12 crayons. She takes 5 of them out of the box. What fraction of the crayons are left in the box?

Emily's mom made her a ham sandwich for lunch today. She cut it into 4 equal pieces. If Emily eats two pieces, what fraction of her sandwich did she eat?

Fractions

Cody had 8 pieces of a candy bar. He gave his best friend 3 pieces. What fraction of the candy bar does Cody have left?

Jason has 5 books about animals. 3 of the books are about tigers, and the rest are about insects. What fraction of the books are about insects.

Where should the fraction $\frac{3}{4}$ be placed on the number line?

Where should the fraction $\frac{3}{8}$ be placed on the number line?

Where should the fraction $\frac{1}{6}$ be placed on the number line?
 Where should the fraction $\frac{2}{3}$ be placed on the number line?
\qquad - - - - What fraction is shown on the number line?

What fraction is shown on the number line？

Fractions

Which number line is partitioned into eighths？

ーーーーーーーーーーーーーーーーーーーーーーーーー Which number line is partitioned into sixths？

What is the missing number?

Fractions

What is the missing number?

Name a fraction equivalent to $\frac{1}{3}$
27

Name a fraction equivalent to $\frac{4}{6}$.
Fractions

Name a fraction equivalent to $\frac{2}{4}$.

Is the fraction

|3| - - - Fractions

Is the fraction
 Is the fraction
 5 equal to one?

Write a fraction that is equivalent to three.

Compare the fractions using $>,<$, or $=$.

Fractions

Compare the $\overline{\text { fractions }} \overline{\text { using }}>\bar{\prime}, \overline{<}$, or $=$.

Fractions

 Compare the fractions using $>$, $<$, or $=$.

2

Fractions

\square

What does the numerator stand for in the fraction?

What fraction of the figure is shaded?

What fraction of the figure is shaded？

蹋 Susie has a box of 12 crayons．She takes 5 of them out of the box．What fraction of the crayons are left in the box？
 best friend 3 pieces．What fraction of the candy bar does Cody have left？ are about tigers，and the rest are about insects． What fraction of the books are about insects．

Where should the fraction $\frac{3}{4}$ be placed on the number line？

Where should the fraction $\frac{3}{8}$ be placed on the number line？

Where should the fraction $\frac{1}{6}$ be placed on the number line？

13
Where should the fraction $\frac{2}{3}$ be placed on the number line？

14 What fraction is shown on the number line？ ｜直晧：

 Fractions

Fractions

－${ }^{-}$Which number line is partitioned $\overline{i n t o} \overline{\text { sixths？}}$

Fractions

22
Fractions

0	$\frac{1}{6}$	$\frac{?}{6}$	$\frac{3}{6}$	$\frac{4}{6}$	$\frac{5}{6}$	l

Fractions
23

Name a fraction

124

1			
$\frac{1}{2}$		$\frac{1}{2}$	
$\frac{1}{3}$	$\frac{1}{3}$		$\frac{1}{3}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

$\frac{1}{2} 1$						
$\frac{1}{2}$			$\frac{1}{2}$			
$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$		
$\frac{1}{8}$						

Name a fraction equivalent to $\frac{4}{8}$ ．

Name a fraction equivalent to $\frac{1}{3}$ ．

Name a fraction equivalent to $\frac{4}{6}$ ．

Name a fraction equivalent to $\frac{2}{4}$ ．

Name a fraction equivalent to $\frac{3}{4}$ ．

Is the fraction
 |31 - -

 Is the fraction

Fractions

Write a fraction that is

 equivalent to three.Compare the fractions using $>,<$, or $=$.

$\square \longleftarrow$

Compare the fractions using $>,<$, or $=$.

Compare the fractions using $>,<$, or $=$.

Fractions

$\frac{2}{6}$

Compare the fractions using $\overline{>}, \overline{<}$, or $\overline{=}$.

3

=
Fractions
IT CAN.
Fractions
IT CAN...
Fractions
IT CAN
Fractions
I CAN...
Fractions

Tenach hershop

THANK YOU so much for purchasing this resource from On_{n} stop Teacher shop!

FOLLOW ME for product updates and FREEBIES!

Have a minute?

I would really appreciate your feedback!!
CLICK HERE and earn TpT Credits just for leaving feedback

IMRE RGSOUPGGS

Common Core
Language Arts

Common Core
 Mathematics
 Science

Homework

BUNDLES
FREEBIES

Graphics by Myko Confetti Graphics Graphics Credits The Enlightened Elephant I NEED A GOOD CLIP Graphics frpm the Pond Graphics by Teacher Laura Z is for Zebra

