Grade 5 Mathematics
Student At-Home Activity Packet

This At-Home Activity Packet includes 27 sets of practice problems that align to important math concepts your student has worked with so far this year.

We recommend that your student completes one page of practice problems each day.

Encourage your student to do the best they can with this content—the most important thing is that they continue developing their mathematical fluency and skills!

See the Grade 5 Math concepts covered in this packet!
# Grade 5 Math concepts covered in this packet

<table>
<thead>
<tr>
<th>Concept</th>
<th>Practice</th>
<th>Fluency and Skills Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding the Place Value System</td>
<td>1</td>
<td>Understanding of Place Value</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Understanding Powers of 10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Reading a Decimal in Word Form</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Writing a Decimal in Standard Form</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Comparing Decimals</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Rounding Decimals</td>
</tr>
<tr>
<td>Understanding Multiplication and Division with Whole Numbers</td>
<td>7</td>
<td>Multiplying Multi-Digit Whole Numbers</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Multiplying with the Standard Algorithm</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Using Estimation and Area Models to Divide</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Using Area Models and Partial Quotients to Divide</td>
</tr>
<tr>
<td>Understanding Addition and Subtraction with Decimals</td>
<td>11</td>
<td>Adding Decimals</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Subtracting Decimals to Hundredths</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Using Estimation with Decimals</td>
</tr>
<tr>
<td>Understanding Multiplication and Division with Decimals</td>
<td>14</td>
<td>Multiplying a Decimal by a Whole Number</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Multiplying Decimals Less Than 1</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Multiplying with Decimals Greater Than 1</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Dividing a Decimal by a Whole Number</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Dividing by Hundredths</td>
</tr>
<tr>
<td>Concept</td>
<td>Practice</td>
<td>Fluency and Skills Practice</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Understanding Addition and Subtraction with Fractions</td>
<td>19</td>
<td>Adding Fractions with Unlike Denominators .......... 23</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Adding with Mixed Numbers.................................. 24</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Subtracting Fractions with Unlike Denominators....... 25</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Subtracting with Mixed Numbers............................... 26</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Estimating in Word Problems with Fractions ............. 28</td>
</tr>
<tr>
<td>Extending Multiplication and Division to Fractions</td>
<td>24</td>
<td>Fractions as Division........................................ 29</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Understanding of Multiplying by a Fraction ............. 30</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Multiplying Unit Fractions to Find Area .................. 31</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>Tiling a Rectangle to Find Area............................. 32</td>
</tr>
</tbody>
</table>
Understanding of Place Value

1. The decimal grid in each model represents 1 whole. Shade each model to show the decimal number below the model.

   \[
   \begin{array}{c}
   0.5 \hspace{1cm} 0.05 \\
   \end{array}
   \]

   Complete the comparison statements.
   
   - 0.05 is \underline{_____} of 0.5.
   - 0.5 is \underline{_____} times the value of 0.05.

   Complete the equations.
   
   \[
   0.5 \div \underline{_____} = 0.05 \hspace{1cm} 0.05 \times \underline{_____} = 0.5
   \]

2. Draw a number line from 0 to 2. Then draw and label points at 2 and 0.2.

   Use the number line to explain why 2 is 10 times the value of 0.2.

   Complete the equations to show the relationship between 2 and 0.2.
   
   \[
   0.2 \times \underline{_____} = 2 \\
   2 \div \underline{_____} = 0.2
   \]

### Understanding Powers of 10

**Multiply or divide.**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(6 \div 10)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(0.6 \div 10)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(6 \div 10^2)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(0.6 \div 10^2)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(6 \div 10^3)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(60 \div 10^3)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(0.3 \times 10)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(0.3 \times 10^2)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(0.3 \times 10^3)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(0.03 \times 10^2)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(0.003 \times 10^2)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>(0.03 \times 10^3)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>(72 \div 10)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>(0.72 \times 10^2)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>(7,200 \div 10^3)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>(20 \div 10^2)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>(0.9 \times 10^3)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>(0.001 \times 10^2)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>(54 \div 10)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>(150 \div 10^3)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>(0.46 \times 10^3)</td>
<td></td>
</tr>
</tbody>
</table>

22. What strategies did you use to solve the problems? Explain.
Reading a Decimal in Word Form

What is the word form of each decimal?

1. 0.2
   __________________________

2. 0.02
   __________________________

3. 0.002
   __________________________

4. 0.12
   __________________________

5. 0.012
   __________________________

6. 0.102
   __________________________

7. 1.002
   __________________________

8. 9.4
   __________________________

9. 90.04
   __________________________

10. 0.94
    __________________________

11. 500.2
    __________________________

12. 8.008
    __________________________

13. 700.06
    __________________________

14. 6.335
    __________________________

15. 3,000.001
    __________________________

16. What strategies did you use to help you read the decimals? Explain.
What decimal represents each number?

1. one and six tenths
2. eight and eleven hundredths
3. $6 \times 1 + 5 \times \frac{1}{10}$
4. thirteen and thirteen thousandths
5. $2 \times 10 + 7 \times \frac{1}{10} + 3 \times \frac{1}{100}$
6. $4 \times 1 + 1 \times \frac{1}{100} + 9 \times \frac{1}{1,000}$
7. five hundred twelve thousandths
8. $8 \times 100 + 2 \times \frac{1}{10} + 8 \times \frac{1}{1,000}$
9. $2 \times 1 + 4 \times \frac{1}{100}$
10. forty-two and forty-one hundredths
11. $7 \times 100 + 2 \times 10 + 3 \times 1 + 6 \times \frac{1}{10}$
12. twelve and sixty-eight thousandths
13. $3 \times 1,000 + 6 \times 100 + 3 \times 10 + 7 \times \frac{1}{10} + 2 \times \frac{1}{100} + 8 \times \frac{1}{1,000}$
14. nine hundred fifty-six and four hundred twenty-seven thousandths
15. How was writing decimals for numbers in word form different from numbers in expanded form?
Comparing Decimals

Write the symbol <, =, or > in each comparison statement.

1. 0.02 _____ 0.002
2. 0.05 _____ 0.5
3. 0.74 _____ 0.84

4. 0.74 _____ 0.084
5. 1.2 _____ 1.25
6. 5.130 _____ 5.13

7. 3.201 _____ 3.099
8. 0.159 _____ 1.590
9. 8.269 _____ 8.268

10. 4.60 _____ 4.060
11. 302.026 _____ 300.226
12. 0.237 _____ 0.223

13. 3.033 _____ 3.303
14. 9.074 _____ 9.47
15. 6.129 _____ 6.19

16. 567.45 _____ 564.75
17. 78.967 _____ 78.957
18. 5.346 _____ 5.4

19. 12.112 _____ 12.121
20. 26.2 _____ 26.200
21. 100.32 _____ 100.232

22. What strategies did you use to solve the problems? Explain.
## Rounding Decimals

### Round each decimal to the nearest tenth.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.32</td>
<td>2</td>
<td>3.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.709</td>
</tr>
<tr>
<td>4</td>
<td>12.75</td>
<td>5</td>
<td>12.745</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>645.059</td>
</tr>
</tbody>
</table>

### Round each decimal to the nearest hundredth.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.079</td>
<td>8</td>
<td>0.854</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.709</td>
</tr>
<tr>
<td>10</td>
<td>12.745</td>
<td>11</td>
<td>645.059</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>50.501</td>
</tr>
</tbody>
</table>

### Round each decimal to the nearest whole number.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1.47</td>
<td>14</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>200.051</td>
</tr>
</tbody>
</table>

### 16 Write two different decimals that are the same value when rounded to the nearest tenth. Explain why the rounded values are the same.

### 17 Round 1.299 to the nearest tenth and to the nearest hundredth. Explain why the rounded values are equivalent.
Estimate. Circle all the problems with products between 3,000 and 9,000. Then find the exact products of only the problems you circled.

1. \[132 \times 34\]
2. \[247 \times 15\]
3. \[145 \times 23\]
4. \[308 \times 12\]
5. \[158 \times 41\]
6. \[364 \times 32\]
7. \[400 \times 29\]
8. \[254 \times 17\]
9. \[187 \times 42\]
10. \[216 \times 12\]
11. \[323 \times 18\]
12. \[194 \times 26\]
13. \[317 \times 14\]
14. \[385 \times 31\]
15. \[285 \times 27\]

What strategies did you use to solve the problems? Explain.
Multiplying with the Standard Algorithm

The answers are mixed up at the bottom of the page. Cross out the answers as you complete the problems.

1. 580
   \[ \times 30 \]
   \[ _______ \]

2. 3,104
   \[ \times 18 \]
   \[ _______ \]

3. 1,482
   \[ \times 38 \]
   \[ _______ \]

4. 1,085
   \[ \times 17 \]
   \[ _______ \]

5. 1,236
   \[ \times 55 \]
   \[ _______ \]

6. 1,625
   \[ \times 18 \]
   \[ _______ \]

7. 2,105
   \[ \times 13 \]
   \[ _______ \]

8. 1,788
   \[ \times 15 \]
   \[ _______ \]

9. 2,500
   \[ \times 19 \]
   \[ _______ \]

10. 648
    \[ \times 32 \]
    \[ _______ \]

11. 2,409
    \[ \times 23 \]
    \[ _______ \]

12. 306
    \[ \times 62 \]
    \[ _______ \]

13. 2,417
    \[ \times 24 \]
    \[ _______ \]

14. 650
    \[ \times 35 \]
    \[ _______ \]

15. 962
    \[ \times 44 \]
    \[ _______ \]

Answers

20,736
17,400
27,365
47,500
55,872
18,972
18,445
26,820
67,980
56,316
22,750
29,250
55,407
42,328
58,008
### Using Estimation and Area Models to Divide

Check each answer by multiplying the divisor by the quotient. If the answer is incorrect, cross out the answer and write the correct answer.

<table>
<thead>
<tr>
<th>Division Problems</th>
<th>Student Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>516 ÷ 12</td>
<td>48</td>
</tr>
<tr>
<td>Check: 12 × 48 = 576</td>
<td></td>
</tr>
<tr>
<td>837 ÷ 31</td>
<td>27</td>
</tr>
<tr>
<td>351 ÷ 13</td>
<td>57</td>
</tr>
<tr>
<td>918 ÷ 54</td>
<td>22</td>
</tr>
<tr>
<td>896 ÷ 32</td>
<td>23</td>
</tr>
<tr>
<td>1,482 ÷ 78</td>
<td>14</td>
</tr>
<tr>
<td>1,012 ÷ 11</td>
<td>82</td>
</tr>
<tr>
<td>1,344 ÷ 56</td>
<td>24</td>
</tr>
</tbody>
</table>

1. Explain how you could know that the answers to two of the problems are incorrect without multiplying.
Using Area Models and Partial Quotients to Divide

Estimate. Circle all the problems that will have quotients greater than 30. Then find the exact quotients of only the problems you circled.

1. 540 ÷ 12
   ____

2. 798 ÷ 38
   ____

3. 429 ÷ 11
   ____

4. 931 ÷ 19
   ____

5. 925 ÷ 25
   ____

6. 390 ÷ 15
   ____

7. 1,071 ÷ 51
   ____

8. 1,326 ÷ 13
   ____

9. 1,856 ÷ 32
   ____

10. 2,952 ÷ 72
    ____

11. 1,869 ÷ 89
    ____

12. 1,798 ÷ 29
    ____

13. Select a problem you did not circle. Describe two different ways you could use estimation to tell the quotient is not greater than 30.
# Adding Decimals

Circle all the problems with sums less than 5. Then find the exact sums of only the problems you circled.

<table>
<thead>
<tr>
<th></th>
<th>Expression</th>
<th></th>
<th>Expression</th>
<th></th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.24 + 4.25</td>
<td></td>
<td>2</td>
<td>4.8 + 0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.31 + 2.7</td>
<td></td>
<td>5</td>
<td>0.909 + 4.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.675 + 2.325</td>
<td></td>
<td>8</td>
<td>3.775 + 0.225</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.6 + 2.933</td>
<td></td>
<td>11</td>
<td>1.809 + 3.091</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.83 + 3.1 + 0.1</td>
<td></td>
<td>14</td>
<td>0.012 + 3.79 + 1.101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>What strategies did you use to solve the problems?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subtracting Decimals to Hundredths

The answers are mixed up at the bottom of the page. Cross out the answers as you complete the problems.

1. $7.5 - 1.2$
2. $10.75 - 4.13$
3. $20.2 - 14.8$
4. $6.12 - 0.7$
5. $41.5 - 33.25$
6. $15.9 - 8.92$
7. $105.53 - 99.28$
8. $9.46 - 3.68$
9. $74 - 65.9$
10. $5.05 - 0.56$
11. $31.27 - 23.67$
12. $256.4 - 248.38$
13. $12 - 4.39$
14. $1,280.01 - 1,272.77$
15. $500.2 - 494.94$

Answers

6.25  5.26  6.62  8.1  7.6
4.49  8.25  7.61  6.98  5.42
7.24  5.4  8.02  5.78  6.3
Using Estimation with Decimals

Solve the problems.

1. Lori needs at least 12 liters of water to fill a water cooler. She has a container with 4.55 liters of water, a container with 3.25 liters of water, and a container with 4.85 liters of water. Does she have enough water? Use estimation only to decide. Explain why you are confident in your estimate.

2. Nia wants the total weight of her luggage to be no more than 50 kilograms. She has three suitcases that weigh 15.8 kilograms, 17.42 kilograms, and 16.28 kilograms. Is the total weight within the limit? Use only estimation to decide. Explain how you know your estimate gives you the correct answer.

3. Omar measures one machine part with length 4.392 centimeters and another part with length 6.82 centimeters. What is the difference in length? Use estimation to check your answer for reasonableness.
4 Kyle wants to buy a hat for $5.75, a T-shirt for $7.65, and a keychain for $3.15. He has $16. Does he have enough money? Use estimation only to decide. Explain why you are confident in your estimate.

5 For his hiking club, Ricardo is making a container of trail mix with 3.5 kilograms of nuts. He has 1.78 kilograms of peanuts and 0.625 kilograms of almonds. The rest of the nuts will be cashews. How many kilograms of cashews does he need? Use estimation to check your answer for reasonableness.

6 Suppose you want to be sure that the total cost of three items does not go over a certain amount. How can you use estimation only to solve the problem?
# Multiplying a Decimal by a Whole Number

**Multiply.**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$3 \times 0.2$</td>
<td>2</td>
<td>$3 \times 0.03$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$4 \times 0.08$</td>
<td>5</td>
<td>$4 \times 1.1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$6 \times 0.07$</td>
<td>8</td>
<td>$6 \times 1.1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$21 \times 0.05$</td>
<td>11</td>
<td>$21 \times 1.05$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>$9 \times 3.25$</td>
<td>14</td>
<td>$5 \times 0.87$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>$16 \times 6.4$</td>
<td>17</td>
<td>$7 \times 6.89$</td>
</tr>
</tbody>
</table>

19. How did you know where to put the decimal point in problem 6?
## Multiplying Decimals Less Than 1

Name: __________________________

### Multiply.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5 × 3</td>
<td>2</td>
<td>0.5 × 0.3</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td>3</td>
<td>0.5 × 0.03</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td></td>
<td>___</td>
</tr>
<tr>
<td>4</td>
<td>6 × 0.2</td>
<td>5</td>
<td>0.6 × 0.2</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td>6</td>
<td>0.06 × 0.2</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td></td>
<td>___</td>
</tr>
<tr>
<td>7</td>
<td>0.8 × 0.1</td>
<td>8</td>
<td>0.8 × 0.2</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td>9</td>
<td>0.8 × 0.3</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td></td>
<td>___</td>
</tr>
<tr>
<td>10</td>
<td>0.4 × 0.02</td>
<td>11</td>
<td>0.4 × 0.04</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td>12</td>
<td>0.4 × 0.12</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td></td>
<td>___</td>
</tr>
<tr>
<td>13</td>
<td>0.3 × 0.4</td>
<td>14</td>
<td>0.6 × 0.4</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td>15</td>
<td>0.6 × 0.8</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td></td>
<td>___</td>
</tr>
<tr>
<td>16</td>
<td>0.01 × 0.5</td>
<td>17</td>
<td>0.05 × 0.5</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td>18</td>
<td>0.25 × 0.5</td>
</tr>
<tr>
<td></td>
<td>___</td>
<td></td>
<td>___</td>
</tr>
</tbody>
</table>

### 19 Describe a pattern you noticed when you were completing the problem set.
Multiply the following products and cross out the answers as you complete the problems.

1. $0.3 \times 1.2$
2. $1.2 \times 0.4$
3. $1.2 \times 1.1$

4. $0.3 \times 12.1$
5. $4.4 \times 1.1$
6. $0.02 \times 1.8$

7. $7.1 \times 5.1$
8. $6.6 \times 0.02$
9. $2.4 \times 4.8$

10. $9.2 \times 5.24$
11. $1.2 \times 1.24$
12. $8.4 \times 6.2$

13. $4.2 \times 3.21$
14. $4.25 \times 8.5$
15. $1.9 \times 2.78$

The answers are mixed up at the bottom of the page. Cross out the answers as you complete the problems.

Answers:

0.132  1.32  13.482  1.488  48.208
4.84   0.48  52.08   11.52  5.282
36.125 0.036  0.36    3.63   36.21
**Dividing a Decimal by a Whole Number**

Multiply to check if the student’s answer is reasonable. If not, cross out the answer and write the correct quotient.

<table>
<thead>
<tr>
<th>Division Problems</th>
<th>Student Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.88 ÷ 11</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Product: 11 × 0.8 = 8.8</td>
</tr>
<tr>
<td>5.6 ÷ 8</td>
<td>0.07</td>
</tr>
<tr>
<td>7.2 ÷ 9</td>
<td>0.8</td>
</tr>
<tr>
<td>25.35 ÷ 5</td>
<td>5.7</td>
</tr>
<tr>
<td>21.7 ÷ 7</td>
<td>3.1</td>
</tr>
<tr>
<td>14.4 ÷ 12</td>
<td>0.12</td>
</tr>
<tr>
<td>96.16 ÷ 8</td>
<td>12.2</td>
</tr>
<tr>
<td>60.18 ÷ 2</td>
<td>30.9</td>
</tr>
</tbody>
</table>

1. Can an answer be incorrect even if it looks reasonable? Explain.
### Dividing by Hundredths

**Divide.**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1 \div 0.25$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$4 \div 0.25$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$3.75 \div 0.25$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$6.5 \div 0.25$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$1.8 \div 9$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$1.8 \div 0.9$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$1.8 \div 0.09$</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$225 \div 75$</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$22.5 \div 7.5$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$2.25 \div 0.75$</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$0.36 \div 0.06$</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$6.36 \div 0.06$</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>$36.36 \div 0.06$</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>$9 \div 2.25$</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$13.5 \div 2.25$</td>
<td></td>
</tr>
</tbody>
</table>

16. Describe a pattern you noticed when you were completing the problem set.
Adding Fractions with Unlike Denominators

Add.

1. \( \frac{1}{2} + \frac{1}{4} \)
2. \( \frac{1}{2} + \frac{3}{8} \)
3. \( \frac{1}{2} + \frac{1}{3} \)
4. \( \frac{1}{3} + \frac{1}{4} \)
5. \( \frac{5}{6} + \frac{1}{12} \)
6. \( \frac{1}{3} + \frac{2}{5} \)
7. \( \frac{5}{6} + \frac{2}{3} \)
8. \( \frac{3}{4} + \frac{5}{6} \)
9. \( \frac{7}{9} + \frac{1}{6} \)
10. \( \frac{7}{8} + \frac{2}{3} \)
11. \( \frac{3}{2} + \frac{3}{5} \)
12. \( \frac{9}{8} + \frac{5}{6} \)

13. What is a different common denominator you could use in problem 2? Describe how you would add the fractions using this different common denominator. Is the result equivalent to the sum found in problem 2?
Adding with Mixed Numbers

Add.

1. \( \frac{7}{8} + \frac{1}{8} \)
2. \( \frac{7}{8} + \frac{1}{4} \)
3. \( \frac{7}{8} + \frac{1}{2} \)

4. \( \frac{3}{4} + \frac{1}{3} \)
5. \( \frac{3}{4} + \frac{2}{3} \)
6. \( \frac{3}{4} + \frac{5}{6} \)

7. \( 1\frac{2}{5} + 1\frac{1}{2} \)
8. \( 2\frac{4}{5} + 3\frac{1}{2} \)
9. \( 3\frac{2}{3} + 3\frac{2}{3} \)

10. \( 4\frac{5}{8} + 2\frac{2}{3} \)
11. \( 5\frac{3}{4} + 2\frac{3}{5} \)
12. \( 3\frac{5}{6} + 2\frac{7}{8} \)

13. What strategy did you use to solve problem 3? Describe each step.
Subtracting Fractions with Unlike Denominators

Subtract.

1 \[ \frac{1}{2} - \frac{1}{4} \]

2 \[ \frac{1}{2} - \frac{3}{8} \]

3 \[ \frac{1}{2} - \frac{1}{3} \]

4 \[ \frac{1}{3} - \frac{1}{4} \]

5 \[ \frac{5}{6} - \frac{5}{12} \]

6 \[ \frac{3}{4} - \frac{1}{6} \]

7 \[ \frac{7}{8} - \frac{3}{4} \]

8 \[ \frac{1}{2} - \frac{2}{5} \]

9 \[ \frac{3}{4} - \frac{3}{5} \]

10 \[ \frac{2}{3} - \frac{3}{5} \]

11 \[ \frac{5}{6} - \frac{3}{8} \]

12 \[ \frac{7}{8} - \frac{2}{3} \]

13 How could you check your work in problem 4? Describe each step.
Subtracting with Mixed Numbers

Subtract.

1. \( \frac{2}{8} - \frac{1}{4} \)
2. \( \frac{2}{8} - \frac{1}{2} \)
3. \( \frac{2}{8} - \frac{3}{4} \)

4. \( \frac{2}{2} - \frac{2}{3} \)
5. \( \frac{2}{4} - \frac{1}{3} \)
6. \( \frac{3}{6} - \frac{1}{3} \)

7. \( \frac{7}{5} - \frac{3}{2} \)
8. \( \frac{5}{8} - \frac{4}{6} \)
9. \( \frac{8}{3} - \frac{3}{5} \)

10. \( \frac{6}{5} - \frac{3}{4} \)
11. \( \frac{9}{8} - \frac{3}{5} \)
12. \( \frac{14}{8} - \frac{9}{6} \)

13. What pattern did you notice in problems 1 through 3? Explain how this helped you subtract.
Estimating in Word Problems with Fractions

Solve the problems. Estimate to tell if your solution is reasonable. Show your work.

1 Jim mails one package that weighs \( \frac{3}{8} \) pound and another that weighs \( \frac{2}{3} \) pound. What is the total weight of both packages?

2 Rosa needs \( 5\frac{1}{4} \) yards of ribbon for a crafts project. She already has \( 2\frac{7}{8} \) yards of ribbon. How many more yards of ribbon does she need to buy?

3 To make fruit punch, Tyrone needs \( 3\frac{3}{8} \) quarts of orange juice and \( 3\frac{3}{4} \) quarts of cranberry juice. How many quarts of juice does he need in all?
Lin spent $\frac{5}{6}$ hour on math homework and $1\frac{3}{4}$ hours on science homework. How many hours in all did she spend on homework for both subjects?

Sandra rode her bike $9\frac{1}{3}$ miles on Monday and $6\frac{4}{5}$ miles on Tuesday. How many more miles did she ride on Monday than on Tuesday?

How can you make a high estimate for the sum of two fractions in a word problem?
Fractions as Division

Solve each problem.

1. Roger has 4 gallons of orange juice. He puts the same amount of juice into each of 5 pitchers. How many gallons of orange juice are in 1 pitcher?

2. Marta has 8 cubic feet of potting soil and 3 flower pots. She wants to put the same amount of soil in each pot. How many cubic feet of soil will she put in each flower pot?

3. Greg made 27 ounces of potato salad to serve to 10 guests at a picnic. If each serving is the same size, how much potato salad will each guest receive?

4. Chandra spends 15 minutes doing 4 math problems. She spends the same amount of time on each problem. How many minutes does she spend on each problem?

5. Taylor has 5 yards of gold ribbon to decorate 8 costumes for the school play. She plans to use the same amount of ribbon for each costume. How many yards of ribbon will she use for each costume?

6. DeShawn is using 7 yards of wire fencing to make a play area for his puppy. He wants to cut the fencing into 6 pieces of equal length. How long will each piece of fencing be?

7. What is a division word problem that can be represented by $\frac{4}{3}$?
Understanding of Multiplying by a Fraction

1. Draw a number line model to represent each multiplication problem. Then solve the problem.

   \[ \frac{2}{3} \times \frac{1}{2} = \]
   \[ \frac{5}{6} \times \frac{3}{4} = \]

2. Draw an area model to represent each multiplication problem. Then solve the problem.

   \[ \frac{4}{5} \times \frac{2}{3} = \]
   \[ \frac{3}{4} \times \frac{1}{6} = \]

Each multiplication problem is used to find the area of a rectangle. Write the missing digits in the boxes to make each multiplication problem true.

1. length: \(\frac{1}{2}\) unit
   width: \(\frac{1}{8}\) unit
   \[\frac{1}{2} \times \frac{1}{8} = \square\] square unit

2. length: \(\frac{1}{3}\) unit
   width: \(\frac{1}{4}\) unit
   \[\frac{1}{3} \times \frac{1}{4} = \square\] square unit

3. length: \(\frac{1}{2}\) unit
   width: \(\frac{1}{4}\) unit
   \[\frac{1}{2} \times \frac{1}{3} = \square\] square unit

4. length: \(\frac{1}{2}\) unit
   width: \(\frac{1}{5}\) unit
   \[\frac{1}{2} \times \frac{1}{5} = \square\] square unit

5. length: \(\frac{1}{4}\) unit
   width: \(\frac{1}{4}\) unit
   \[\frac{1}{4} \times \frac{1}{4} = \square\]

6. length: \(\frac{1}{3}\) unit
   width: \(\frac{1}{8}\) unit
   \[\frac{1}{3} \times \frac{1}{8} = \square\]

7. length: \(\frac{1}{2}\) unit
   width: \(\frac{1}{7}\) unit
   \[\frac{1}{2} \times \frac{1}{7} = \square\]

8. length: \(\frac{1}{3}\) unit
   width: \(\frac{1}{10}\) unit
   \[\frac{1}{3} \times \frac{1}{10} = \square\] square unit

9. length: \(\frac{1}{5}\) unit
   width: \(\frac{1}{6}\) unit
   \[\frac{1}{5} \times \frac{1}{6} = \square\] square unit

10. Write missing digits in the boxes to make two different multiplication problems that are both true.
    \[\square \times \frac{1}{4} = \square\]
    \[\frac{1}{3} \times \frac{1}{4} = \square\]
Tiling a Rectangle to Find Area

Each multiplication problem is used to find the area of a rectangle. Write each product.

1. length: $\frac{1}{2}$ unit  
   width: $\frac{1}{3}$ unit  
   $\frac{1}{2} \times \frac{1}{3}$  
   ______ square unit

2. length: $\frac{2}{3}$ unit  
   width: $\frac{1}{2}$ unit  
   $\frac{2}{3} \times \frac{1}{2}$  
   ______ square unit

3. length: $\frac{3}{2}$ unit  
   width: $\frac{2}{3}$ unit  
   $\frac{3}{2} \times \frac{2}{3}$  
   ______ square unit

4. length: $\frac{1}{3}$ unit  
   width: $\frac{1}{4}$ unit  
   $\frac{1}{3} \times \frac{1}{4}$  
   ______ square unit

5. length: $\frac{3}{4}$ unit  
   width: $\frac{1}{3}$ unit  
   $\frac{3}{4} \times \frac{1}{3}$  
   ______ square unit

6. length: $\frac{5}{3}$ unit  
   width: $\frac{3}{4}$ unit  
   $\frac{5}{3} \times \frac{3}{4}$  
   ______ square unit

7. length: $\frac{3}{5}$ unit  
   width: $\frac{1}{2}$ unit  
   $\frac{3}{5} \times \frac{1}{2}$  
   ______ square unit

8. length: $\frac{3}{2}$ unit  
   width: $\frac{3}{5}$ unit  
   $\frac{3}{2} \times \frac{3}{5}$  
   ______ square unit

9. length: $\frac{3}{2}$ unit  
   width: $\frac{6}{5}$ unit  
   $\frac{3}{2} \times \frac{6}{5}$  
   ______ square unit

10. Describe how you could modify one tiling diagram to solve problems 1 through 3.