

ACT FORMULA SHEET

Arithmetic and Algebra

Properties of Exponents and Radicals

$$a^n \cdot a^m = a^{n+m}$$

$$\frac{a^n}{a^m} = a^{n-m}$$

$$(a^n)^m = a^{nm}$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{h}\right)^n = \frac{a^n}{h^n}$$

$$a^{-n} = \frac{1}{a^n}$$

$$\frac{1}{a^{-n}} = a^n$$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

Generic Formulas

Quadratic Formula: For $ax^2 + bx + c = 0$, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Arithmetic Mean: Sum of Terms Number of Terms

Event Probability: $\frac{Desired\ Outcomes}{Possible\ Outcomes}$

Distance: $Distance = Rate \cdot Time$

Percent Growth/Decay: $Original(1 \pm r_1)(1 \pm r_2)...$

Percent Change: $\frac{\textit{New - Old}}{\textit{Old}} \cdot 100\%$

In Percent Growth or Decay, r_1 , r_2 , ... are the percents an amount is being changed by each year, month, etc.

Arithmetic Sequence/Series

Common Difference: $d = a_{n+1} - a_n$

Find the n^{th} term: $a_n = a_1 + (n - 1)d$

Sum the first *n* terms: $S_n = \frac{n}{2} (a_1 + a_n)$

Geometric Sequence/Series

Common Ratio: $r = \frac{a_{n+1}}{a_n}$

Find the n^{th} term: $a_n = a_1 r^{n-1}$

Sum the first *n* terms: $S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$

Counting and Ordering

Combination (Order Doesn't Matter): ${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$

Permutation (Order Does Matter): ${}_{n}P_{r} = \frac{n!}{(n-r)!}$

Remember, n is the number of choices you have, and r is how many you are going to choose.

Properties of Logarithms

 $log_a a^x = x$

 $x \log_a y = \log_a y^x$

 $\log_a x + \log_a y = \log_a (xy)$

 $\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$

Geometry

The Circle

Area: $A = \pi r^2$

Circumference: $C = 2\pi r$

Arc length: $L(A,B) = \frac{\theta}{360^{\circ}} \cdot 2\pi r$

Sector Area: $AOB = \frac{\theta}{360^{\circ}} \cdot \pi r^2$

Equation for circle with center (h, k) and radius $r: (x - h)^2 + (y - k)^2 = r^2$

Areas

Parallelogram: A = bh

Trapezoid: $A = \frac{1}{2} (b_1 + b_2)h$

Triangle: $A = \frac{1}{2}bh$

Cube: $A = 6s^2$

Volumes

Cube: $V = s^3$

Rectangular Prism: V = lwh

Cylinder: $V = \pi r^2 h$

Sphere: $V = \frac{4}{3}\pi r^3$

Angles

Sum of Interior Angles: = $180(n - 2)^{\circ}$

Each Interior Angle: = $\frac{180(n-2)^{\circ}}{n}$

Sum of Exterior Angles: = 360°

Each Exterior Angles: = $\frac{360^{\circ}}{n}$

Lines

Slope of a Line: $m = \frac{y_2 - y_1}{x_2 - x_1}$

Midpoint: $M = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$

Distance: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Pythagorean's Theorem in 3D

$$d^2 = a^2 + b^2 + c^2$$

Trigonometry

Pythagorean Theorem

Pythagorean Theorem $d^2 = a^2 + b^2 + c^2$

Trigonometric Ratios

$\sin A =$	opposite l	leg
	hypotenu	ıse

$$\csc A = \frac{\text{hypotenuse}}{\text{opposite leg}}$$

$$\cos A = \frac{\text{adjacent leg}}{\text{hypotenuse}}$$

$$\sec A = \frac{\text{hypotenuse}}{\text{adjacent leg}}$$

$$\tan A = \frac{\text{opposite leg}}{\text{adjacent leg}}$$

$$\cot A = \frac{\text{adjacent leg}}{\text{opposite leg}}$$

