40000000004

Passage IV

Figure 1 is a diagram of an *RLC circuit*. The circuit has a power supply and 3 components: a resistor (R), an inductor (L), and a capacitor (C).

Figure 1

Electric current can flow through the circuit either clockwise (positive current) or counterclockwise (negative current). Figure 2 shows how the electric current in the circuit, I (in amperes, A), and the power supply voltage, V_S (in volts, V), both changed during a 20-millisecond (msec) time interval.

Figure 2

Figure 3 shows how the voltages across the components— $V_{\rm R},~V_{\rm L},~{\rm and}~V_{\rm C},~{\rm respectively}$ —each changed during the same 20 msec time interval.

Figure 3

- 21. According to Figure 2, the maximum positive value of $V_{\rm S}$ was approximately:
 - **A.** 125 V.
 - **B.** 200 V.
 - C. 250 V.
 - D. 275 V.
- 22. A period is the time required for a wave to complete one full cycle. Based on Figure 3, the period for $V_{\rm L}$ was:
 - F. 5 msec.
 - **G.** 10 msec.
 - **H.** 20 msec.
 - **J.** 40 msec.

- 23. According to Figures 2 and 3, which voltage varied the *least* during the 20 msec interval?
 - \mathbf{A} . V_{S}
 - \mathbf{B} . V_{R}
 - C. $V_{\rm L}^{\rm R}$
 - $\mathbf{D}. \quad V_{\mathbf{C}}$
- 24. Polarity refers to whether a voltage is positive or negative (a voltage of 0 V has no polarity and can be ignored). Based on Figures 2 and 3, which 2 voltages were always opposite in polarity?
 - **F.** $V_{\rm R}$ and $V_{\rm L}$
 - **G.** $V_{\rm R}$ and $V_{\rm S}$
 - \mathbf{H} . V_{L} and V_{C}
 - **J.** $V_{\rm L}$ and $V_{\rm S}$
- **25.** Based on Figure 2, at which of the following times was the current in the circuit flowing counterclockwise?
 - A. 0 msec
 - B. 5 msec
 - C. 10 msec
 - **D.** 15 msec

26. The table below lists the electric charge (in microcoulombs, μC) stored on the capacitor at 3 different times during the 20 msec interval.

Time (msec)	Charge (µC)
7	0.51
10	0.87
13	0.51

Based on Figures 2 and 3, from time = 7 msec through time = 13 msec, did the charge on the capacitor more likely change in sync with I or with $V_{\rm C}$?

- **F.** *I*; over that time interval, both the charge and *I* decreased and then increased.
- **G.** *I*; over that time interval, both the charge and *I* increased and then decreased.
- **H.** $V_{\rm C}$; over that time interval, both the charge and $V_{\rm C}$ decreased and then increased.
- **J.** $V_{\rm C}$; over that time interval, both the charge and $V_{\rm C}$ increased and then decreased.