Water Quality Program

Lead Testing in Drinking Water

Site:

Vermillion Association for Special Education 15009 Catlin-Tilton Road Danville, IL 61834

Local Education Agency: Vermillion Association for Special Education

Completion Date: October 27, 2017

Public Act 099-0922

Public Act 099-0922, was passed into law in January 2017. The Act requires the Local Education Agency (LEA) to test for lead in all water sources used for cooking and drinking in schools built on or before January 1, 2000, where more than 10 pre-kindergarten through 5th grade children are present. The timeframe for compliance is December 31, 2017, for buildings constructed prior to January 1, 1987; and December 31, 2018, for those built between January 2, 1987 and January 1, 2000. Water samples are required to be analyzed by a method approved by the Illinois Environmental Protection Agency (IEPA) that provides a minimum reporting limit of 2 parts per billion (ppb). Notifications are required. Mitigation may be required based on test results. A Water Quality Management Plan (WQMP) is required.

Scope of Service

On October 27, 2017, Ideal Environmental Engineering (IDEAL) performed water sampling at Vermillion Association for Special Education in Danville, IL at the request of the LEA. The water source locations were provided to IDEAL by the LEA.

Purpose of Sampling

Vermillion Association for Special Education is a facility built prior to January 1, 2000, where pre-K through 5th grade students are present. The water was tested to identify possible lead contamination for compliance with Public Act 099-0922.

Sampling Methodology

Prior to sampling, in order to verify that the required 8-18 hour water stagnation period had been met, school personnel provided IDEAL's water collector with the date and time the plumbing system had last been used. The date and time provided are recorded on the chain of custody (COC).

For each water source identified by the LEA, a first-draw 250 milliliter (mL) sample of cold water was collected in a bottle provided by an IEPA-approved laboratory. A first-draw sample is the first amount of water collected from a source. After the first draw was collected, the source was flushed for 30 seconds, followed by the collection of a second-draw 250 mL sample of water. This second sample is called a flush sample. If multiple faucets use the same drain, only one second-draw (flush) sample may have been collected.

Each bottle was placed in a position that allowed for the collection of all of the water. Care was taken to prevent overflow. Each bottle was labeled with a unique identifier (sample ID). The sample ID was recorded on the COC, which lists the location of the sample, source of the sample, and the date and time the sample was collected.

The water bottles were delivered—with the COC to show the relinquishment and receipt of the samples—to an IEPA-accredited laboratory for analysis. The laboratory's accreditation was reviewed by IDEAL to ensure that it was current for an IEPA-approved method of analysis for lead in drinking water.

Summary of Sampling

14 water samples were collected from 7 sources. All results are shown in Table 1.1.

Table 1.1

Sample ID	Sample Location Description	Fixture Type	Sample Type	Concentration
V 1	Hallway at Room 34 Entry	DF - Drinking Fountain	First Draw	23.6 ppb
V 2	Hallway at Room 34 Entry	DF - Drinking Fountain	Flush	23.0 ppb
V 3	Hallway by H.S. Hallway	DF - Drinking Fountain	First Draw	27.8 ppb
V 4	Hallway by H.S. Hallway	DF - Drinking Fountain	Flush	16.3 ppb
V 5	Room 13 - Stainless Sink	S - Sink	First Draw	9.09 ppb
V 6	Room 13 - Stainless Sink	S - Sink	Flush	9.15 ppb
V 7	Room 13 - Restroom Sink	S - Sink	First Draw	6.12 ppb
V 8	Room 13 - Restroom Sink	S - Sink	Flush	ND
V 9	Hallway by Restrooms 7/8	DF - Drinking Fountain	First Draw	24.2 ppb
V 10	Hallway by Restrooms 7/8	DF - Drinking Fountain	Flush	11.8 ppb
V 11	Kitchen - Stainless Sink	KS - Kitchen Sink	First Draw	ND
V 12	Kitchen - Stainless Sink	KS - Kitchen Sink	Flush	ND
V 13	Office Area	DF - Drinking Fountain	First Draw	10.7 ppb
V 14	Office Area	DF - Drinking Fountain	Flush	8.32 ppb
		ND = None Detected		

Notifications

This building is subject to the Act. Notification as outlined below is not optional.

Notification Requirements:

The Illinois Department of Public Health (IDPH) must be informed of the results. The LEA is also required to provide notification of all water testing results to parents and legal guardians of all enrolled students. Notification can be done, at a minimum, on the school's website. In addition, when any test result exceeds 5 ppb, individual written or electronic notification is required to be sent to parents and legal guardians of all enrolled students and must include the location and source exceeding 5 ppb, and the USEPA website for information about lead in drinking water: www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water

Based on sample results, the following are notification requirements for this building:

- Submit to IDPH at <u>dph.leadh2O@illinois.gov</u> all sample results as shown in Table 1.1. As a courtesy, this step has been done by IDEAL. Please refer to Appendix A for electronic transmittal(s).
- Provide to parents and legal guardians all sample results as shown in Table 1.1. This can be done, at a minimum, on the school's website.
- The results identified in Table 1.2 exceed 5 ppb. Provide individual written or electronic notification to parents and legal guardians of all enrolled students the sample results in Table 1.2. Include in the notification the location and source exceeding 5 ppb, and the USEPA website for information about lead in drinking water: www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water.

Refer to Appendix B for a sample notification letter for results exceeding 5 ppb.

Sample ID	Sample Location Description	Fixture Type	Sample Type	Concentration
V 1	Hallway at Room 34 Entry	DF - Drinking Fountain	First Draw	23.6 ppb
V 2	Hallway at Room 34 Entry	DF - Drinking Fountain	Flush	23.0 ppb
V 3	Hallway by H.S. Hallway	DF - Drinking Fountain	First Draw	27.8 ppb
V 4	Hallway by H.S. Hallway	DF - Drinking Fountain	Flush	16.3 ppb
V 5	Room 13 - Stainless Sink	S - Sink	First Draw	9.09 ppb
V 6	Room 13 - Stainless Sink	S - Sink	Flush	9.15 ppb
V 7	Room 13 - Restroom Sink	S - Sink	First Draw	6.12 ppb
V 9	Hallway by Restrooms 7/8	DF - Drinking Fountain	First Draw	24.2 ppb
V 10	Hallway by Restrooms 7/8	DF - Drinking Fountain	Flush	11.8 ppb
V 13	Office Area	DF - Drinking Fountain	First Draw	10.7 ppb
V 14	Office Area	DF - Drinking Fountain	Flush	8.32 ppb

Table 1.2 – Results over 5 ppb

Mitigation

This building is subject to the Act. Mitigation is not optional.

Mitigation Requirements:

IDPH requires mitigation when lead is found in a sample above the detection limit. They recommend the sampling source be removed from service immediately upon learning that it has tested positive for lead. Re-testing is required after mitigation unless the sampling source is taken out of service. Mitigation is to continue until subsequent testing indicates no lead is present.

Based on sample results, the following are mitigation requirements for this building:

• Results shown in Table 1.3 were found to contain lead at or above the 2 ppb detection limit. Mitigate all sources identified in Table 1.3, and retest after mitigation is complete.

Refer to IDPH's website for mitigation strategies: www.dph.illinois.gov/sites/default/files/publications/school-lead-mitigation-strategies-050917.pdf

Sample ID	Sample Location Description	Fixture Type	Sample Type	Concentration
V 1	Hallway at Room 34 Entry	DF - Drinking Fountain	First Draw	23.6 ppb
V 2	Hallway at Room 34 Entry	DF - Drinking Fountain	Flush	23.0 ppb
V 3	Hallway by H.S. Hallway	DF - Drinking Fountain	First Draw	27.8 ppb
V 4	Hallway by H.S. Hallway	DF - Drinking Fountain	Flush	16.3 ppb
V 5	Room 13 - Stainless Sink	S - Sink	First Draw	9.09 ppb
V 6	Room 13 - Stainless Sink	S - Sink	Flush	9.15 ppb
V 7	Room 13 - Restroom Sink	S - Sink	First Draw	6.12 ppb
V 9	Hallway by Restrooms 7/8	DF - Drinking Fountain	First Draw	24.2 ppb
V 10	Hallway by Restrooms 7/8	DF - Drinking Fountain	Flush	11.8 ppb
V 13	Office Area	DF - Drinking Fountain	First Draw	10.7 ppb
V 14	Office Area	DF - Drinking Fountain	Flush	8.32 ppb

Table 1.3 – Results over 2 ppb

Water Quality Management Plan

For all schools subject to the Act, regardless of lead results, a Water Quality Management Plan (WQMP) must be developed and maintained.

Refer to IDPH's website for steps to an effective WQMP: www.dph.illinois.gov/sites/default/files/publications/school-lead-mitigation-strategies-050917.pdf

General Comments

Refer to Appendix C for the complete analysis report, including chain of custody and laboratory accreditation.

This report is based strictly on Illinois Public Act 099-0922. You may also wish to refer to the EPA's 3 *T's for Reducing Lead in Drinking Water* for additional guidance.

The scope of work presented in this report was based on an understanding between IDEAL and the client, whether the understanding was from verbal conversation or written document(s). The scope of work and report shall be deemed accepted by the client unless the client advises to the contrary in writing within 10 days of the receipt of this report.

Please call our office at (800)535-0964 or (309)828-4259 if you have any questions, or if we can be of further assistance with your mitigation, water retesting, the WQMP, or with other environmental services such as asbestos, indoor air quality or bleacher inspections.

Thank you for giving us the opportunity to provide this service to you. We sincerely appreciate the trust and confidence you have in our services.

Paul Weber	
From: Sent: To: Subject:	Paul Weber Friday, December 01, 2017 11:32 AM 'dph.leadh2O@illinois.gov' Lead in Water Results - Vermillion Association for Special Education
Attachments:	Vermillion Assoc. Spec. Ed. Lab Analysis Results.pdf; Vermillion Assoc. Spec. Ed. IDPH Data Report.xlsx

On behalf of Vermillion Association for Special Education in Danville, lead-in-water laboratory results and laboratory accreditation are attached for the following school(s):

Vermillion Association For Special Education

If you have any questions or need additional information, please do not hesitate to call our office at (800)535-0964.

Paul Weber

Ideal Environmental Engineering, Inc. 2904 Tractor Lane Bloomington, IL 61704 Ph: 309-828-4259 or 800-535-0964 Fax: 309-828-5735 Email: <u>pweber@idealenvironmental.com</u>

Although care has been taken to present the content of this email accurately, Ideal Environmental Engineering, Inc. disclaims any implied or actual warranties as to the accuracy of any material herein and any liability with respect hereto. Any sample results, advice or recommendations given in this email are confidential and are intended for use by the addressee and/or their intended representatives only. Sample results, recommendations or advice may be superseded by a complete final report and/or laboratory results. If you received this message in error, please notify the sender immediately and permanently delete this message from your computer.

Three-year reinspection reports:

A reinspection report shall not be used to satisfy the requirement for an inspection prior to renovation. NESHAP asbestos regulations require that all renovation areas be inspected for suspect asbestos containing materials by an IDPH-licensed asbestos inspector. All suspect asbestos containing materials in a renovation area must be sampled prior to disturbance. Review of a three-year reinspection report does not meet the requirements for an asbestos inspection prior to building renovation (or demolition) and shall not be used for such purpose.

<DATE>

Sample Notification Letter

Re: Vermillion Association for Special Education – Lead in Drinking Water Notification

Illinois Public Act 99-922 requires all pre-K through 5th grade schools built before January 1, 2000, to test the level of lead in the water from every outlet that could be used for drinking or food preparation. All sampling results must be submitted to the Illinois Department of Public Health and provided to parents and legal guardians of enrolled students. In addition, if lead is found at levels above 5 parts per billion (ppb), the school district must *individually* notify parents in writing or electronically.

On October 27, 2017, Ideal Environmental Engineering (IDEAL) performed water sampling at Vermillion Association for Special Education in Danville, IL.

This building was built prior to January 1, 2000, and pre-K through 5th grade students are present. The water was tested to identify possible lead contamination for compliance with Public Act 099-0922.

Please go to our website <insert link> to view all the sample results.

Sample Location Description	Fixture Type	Sample Type	Concentration
Hallway at Room 34 Entry	DF - Drinking Fountain	First Draw	23.6 ppb
Hallway at Room 34 Entry	DF - Drinking Fountain	Flush	23.0 ppb
Hallway by H.S. Hallway	DF - Drinking Fountain	First Draw	27.8 ppb
Hallway by H.S. Hallway	DF - Drinking Fountain	Flush	16.3 ppb
Room 13 - Stainless Sink	S - Sink	First Draw	9.09 ppb
Room 13 - Stainless Sink	S - Sink	Flush	9.15 ppb
Room 13 - Restroom Sink	S - Sink	First Draw	6.12 ppb
Hallway by Restrooms 7/8	DF - Drinking Fountain	First Draw	24.2 ppb
Hallway by Restrooms 7/8	DF - Drinking Fountain	Flush	11.8 ppb
Office Area	DF - Drinking Fountain	First Draw	10.7 ppb
Office Area	DF - Drinking Fountain	Flush	8.32 ppb

The following is notification for any sample result found to contain lead levels exceeding 5 ppb.

*****PLEASE NOTE:** When a first draw or flush sample is less than 5 ppb, notification is not required. For instance, if a first draw sample is higher than 5 ppb but the flush sample is less than 5 ppb, the flush sample will not be on the notification.

For information about lead in drinking water, visit the USEPA website at: <u>www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water</u>.

IDPH requires mitigation for any sample results found above the laboratory detection limit for all schools subject to the Act. IDPH set a minimum detection limit of 2 ppb. Please note this mitigation requirement set by the state is significantly more stringent than the 20 ppb action level recommended by the US EPA for school outlets.

Please be assured that we will continue to take all action necessary to protect student health. Mitigation and water management are in progress. Water outlets are being shut off, and we have already begun to take appropriate remedial action for any levels above the laboratory reporting limit.

The risk to an individual child from exposure to lead in drinking water depends on many factors, including the amount of lead in the water, the frequency, duration, and dose of the exposure(s), and individual susceptibility factors (e.g., age, weight, previous exposure history, nutrition, and health). In addition, the degree of harm depends on one's total exposure to lead from all sources in the environment - air, soil, dust, food and water. Parents/guardians who are concerned that their child is displaying symptoms consistent with elevated levels of lead should contact their healthcare provider.

If you have any questions, please contact <school personnel name & phone number>.

Sincerely,

<School Personnel>

Monday, November 27, 2017

Central Office Staff Ideal Environmental Engineering, Inc. 2904 Tractor Lane Bloomington, IL 61704

TEL: (309) 828-4259 FAX: (309) 828-5735

RE: Vermilion Assoc. for Special Education

PAS WO: 17J0831

Prairie Analytical Systems, Inc. received 14 sample(s) on 10/27/2017 for the analyses presented in the following report.

All applicable quality control procedures met method specific acceptance criteria unless otherwise noted.

This report shall not be reproduced, except in full, without the prior written consent of Prairie Analytical Systems, Inc.

If you have any questions, please feel free to contact me at (224) 253-1348.

Respectfully submitted,

Christophia

Christina E. Pierce Project Manager

Certifications:

NELAP/NELAC - IL #100323

1210 Capital Airport Drive	*	Springfield, IL 62707	*	1.217.753.1148	*	1.217.753.1152 Fax	
9114 Virginia Road Suite #112	*	Lake in the Hills, IL 60156	*	1.847.651.2604	*	1.847.458.0538 Fax	

Prairie Analytical S	ystems, Inc.	•						Date: 11/.	27/2017		
				LABO	ORATO	RY RESU	LTS				
Client: Project: Client Sample ID: Collection Date:	Ideal Env Vermilion V 1 10/27/17	ironme Assoc. 4:50	ntal Engino . for Specia	eering, Inc. Il Educatio	n			Lab Order: 17 Lab ID: 17 Matrix: Dr	J0831 J0831-01 inking Water		
Analyses			Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			23.6	2.00		μg/L	1	11/21/17 9:08	11/21/17 15:33	EPA200.8	LAH
Client Sample ID: Collection Date:	V 2 10/27/17	4:51						Lab ID: 17 Matrix: Dr	J0831-02 inking Water		
Analyses			Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			23.0	2.00		μg/L	1	11/21/17 9:08	11/21/17 15:36	EPA200.8	LAH
Client Sample ID: Collection Date:	V 3 10/27/17	4:53						Lab ID: 17 Matrix: Dr	J0831-03 inking Water		
Analyses			Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			27.8	2.00		μg/L	1	11/21/17 9:08	11/21/17 15:38	EPA200.8	LAH
Client Sample ID: Collection Date:	V 4 10/27/17	4:54						Lab ID: 17 Matrix: Dr	J0831-04 inking Water		
Analyses			Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			16.3	2.00		μg/L	1	11/21/17 9:08	11/21/17 15:40	EPA200.8	LAH
Client Sample ID: Collection Date:	V 5 10/27/17	4:57						Lab ID: 17 Matrix: Di	J0831-05 inking Water		
Analyses			Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			9.09	2.00		μg/L	1	11/21/17 9:08	11/21/17 15:42	EPA200.8	LAH
Client Sample ID: Collection Date:	V 6 10/27/17	4:57						Lab ID: 17 Matrix: Dr	J0831-06 inking Water		
Analyses			Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			9.15	2.00		μg/L	1	11/21/17 9:08	11/21/17 15:49	EPA200.8	LAH

Page 2 of 7

Tranic Analytical S	ystems, me.	•						117.	2//2017		
				LABO	ORATO	RY RESU	JLTS				
Client: Project: Client Sample ID: Collection Date:	Ideal Env Vermilion V 7 10/27/17	ironme Assoc 4:59	ental Engine . for Specia	eering, Inc. 11 Educatio	n			Lab Order: 17. Lab ID: 17. Matrix: Dr	J0831 J0831-07 inking Water		
Analyses			Result	Limit	Oual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			6.12	2.00		μg/L	1	11/21/17 9:08	11/21/17 15:58	EPA200.8	LAH
Client Sample ID: Collection Date:	V 8 10/27/17	4:59			4			Lab ID: 17. Matrix: Dr	J0831-08 inking Water		
Analyses			Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			U	2.00		μg/L	1	11/21/17 9:08	11/21/17 16:00	EPA200.8	LAH
Client Sample ID: Collection Date:	V 9 10/27/17	5:01						Lab ID: 17. Matrix: Dr	J0831-09 inking Water		
Analyses			Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			24.2	2.00		μg/L	1	11/21/17 9:08	11/21/17 16:02	EPA200.8	LAH
Client Sample ID: Collection Date:	V 10 10/27/17	5:02						Lab ID: 17. Matrix: Dr	J0831-10 inking Water		
Analyses			Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			11.8	2.00		μg/L	1	11/21/17 9:08	11/21/17 16:04	EPA200.8	LAH
Client Sample ID: Collection Date:	V 11 10/27/17	5:04						Lab ID: 17. Matrix: Dr	J0831-11 inking Water		
Analyses			Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			U	2.00		μg/L	1	11/21/17 9:08	11/21/17 16:06	EPA200.8	LAH
Client Sample ID: Collection Date:	V 12 10/27/17	5:05						Lab ID: 17. Matrix: Dr	J0831-12 inking Water		
Analyses			Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS *Lead			U	2.00		μg/L	1	11/21/17 9:08	11/21/17 16:09	EPA200.8	LAH

Page 3 of 7

· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,									
			LAB	ORATO	RY RESU	JLTS				
Client:	Ideal Envi	ironmental Engi	neering, Inc							
Project:	Vermilion	Assoc. for Spec	ial Educatio	n			Lab Order:	17J0831		
Client Sample ID:	V 13						Lab ID:	17J0831-13		
Collection Date:	10/27/17	5:08					Matrix:	Drinking Water		
Analyses		Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS										
*Lead		10.7	2.00		μg/L	1	11/21/17 9:08	11/21/17 16:11	EPA200.8	LAH
Client Sample ID:	V 14						Lab ID:	17J0831-14		
Collection Date:	10/27/17	5:08					Matrix:	Drinking Water		
Analyses		Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
Metals by ICP-MS										
*Lead		8.32	2.00		µg/L	1	11/21/17 9:08	11/21/17 16:13	EPA200.8	LAH

Page 4 of 7

	LABORATORY R	RESULTS		
Client:	Ideal Environmental Engineering, Inc.			
Project:	Vermilion Assoc. for Special Education	Lab Order:	17J0831	

* NELAC certified compound.

U Analyte not detected (i.e. less than RL or MDL).

Page 5 of 7

14.175: - Later in the His, L. 6707-4480 - Frushine (217) 756-1142 Frushine (217) 756-1142 14.176: - Later in the His, L. 6016: - Phone (277) 756-1142 Intel 1016: - Later in the His, L. 6016: - Frushine (217) 756-1142 14.176: - Later in the His, L. 6016: - Phone (277) 756-1142 Intel 2016: Fill Light (2017) 11. Editor Intel 1704 259 / S09-828-5735 Intel 2016: Fill Condition Association Ferduration Association Ferduration Association Ferduration Association Ferduration Association Ferduration Sample Location Ferduration Sample Location Ferduration Sample Location Ferduration Sample Location Ferduration	Systems, ucaronareo systems, ucaronareo www.prairieanalytical.com	Details Miscellaneous	Be 2 # of sources / # of samples:	((a))) == (17		Drain Drain	Die	м (300), м (300), м (300), м (300), м (300)	Urce/ Urce/ Urce/ Uraw Used:	SOO PH	(Sing See Make / Model	SS V / Nur	S 2 0	2 1	C / S		s s	× × ×	ss v a	55 ~ 1	2 / 2 2	- 7	2 2 2	squested: Lead	Date Method of Shipment	CII/72/01 CII/72/01 CII/72/	11.27.0 440.20	10-27-17 12:35 Hand	me: Standard 🛃 Temperature (°C)	Revisio
Angled. IL. 62707-4360 - Phone (217) 753-1143 Ararrez - Facesimine (217) 753-1143 Ararrez - Facesimine (217) 753-1152 Ormental Engineering. Inc. / 2004 Tractor Lane Onmental Engineering. Inc. / 2004 Tractor Lane On. IL. 61704 Sesi-S735 Ormental Engineering. Inc. / 2004 Tractor Lane On. IL. 61704 Sesociation For Special Education Association Post Part Part Part Part Part Part Part Par		Sample Location	bbet c [.] יאי	Sink i2 ns (1e (1e (7), U (7) U , (5) (6) (6)	, S= (ltcho pht (l pht (l phlic f	ype sar our sar our sar our sar our sar our sar sar sar sar sar sar sar sar sar sa	e Ty r, KS iller, (L), O) as (L), (L), (L),	vurs voler vy Sid vy Sid c (LC c (LC	Fi Tinkir Tinkir Tinkir Botti de b ate: L ate: L awei	H=Dn J=78 BF={ BF={ Solbri Solbri A Col Col Col Col	D D D D D D D D D D D D D D D D D D D		N P J N	NF - S	0F - 5	N 1	N	N 1	1	1 20	0	165 - 3	12 21	Analysis/Method Re	ceived By	Cere.	All .	X PARK	Turnaround Ti	
Angled. IL. 62707-8450 - Phone (217) 753-1140 - Facaimile (217) 753-1140 - Facaimile (217) 753-1140 - Facaimile (217) 753-1152 7,414-7722 - Facaimile (217) 753-1152 Oonmental Engineering, Inc. / 2904 Tractor I Oon. IL 61704 Sol 1 200-528-5735 Internation For Special Education Internation For Special Education Association For Special Education Internation Resolution For Special Education Association For Special Education Astrip Association	(217) 753-1152 simile (847) 458-9680	ane				10				l.com	Sample	272 A wand	424	4534	4 544	rEsh	434	425	4554	SOLA	4765	5044	2024		R	INEAL Lead in Water Dept	t tx	XIX	A) e
ingried. It e2707-8 ingried. It e2707-8 7142-Jake in the Hill 91447782-Facilim 91447782-Facilim 2591309-828- 2591309-828- 2591309-828- 2591309-828- 2591309-8 25000 10-60-6000 10-60000 10-60000 10-60000 10-60000000000	190 - Phone (217) 753-1148 - Facsimile , IL 80156 - Phone (847) 551-2604 - Fa le (217) 753-1152	neering, Inc. / 2904 Tractor I		5735	aniation For Shooint Educati	sociation For special Education	r Special Education	. Danville, IL 61834		linwater@idealenvironmenta	Description	in 24 entra la	P. I. P. I.	us HS hellund	part t	a text sink	7	2 sin re	4	by res 7 x8	7	Naless Sirk		Preservative: None	Date Time	+52F F1/E 6/01	1/2 1/2 1/2 M	k		uner
al Auron Drive - Sp 4 Virginia Rd., Ste anisct - Phone (21) Bloomingti Bloomingti 3092834 142092-80 54-092-80 54-092-80 64-092-80 54-092-80 54-092-80 54-092-80 15009 Cal 15009 Cal 15000 Cal 15000 Cal 15000 Cal 10000 Cal 100000 Cal 100000 Cal 10000 Cal 10000 Cal 100000 Cal 1000000 Ca	al Airport Drive - Springfield, IL 62707-8- 4 Virginia Rd., Ste 112 - Lake in the Hills onlact - Phone (217) 414-7762 - Facsimi	Ideal Environmental Engli	Diamination II 61704	200 878 1750 / 300 878-		J#21089 / Vermilion Ass	Vermilion Association For	15009 Catlin-Tilton Road	E4 002 8010-60-600	ess Central Office Staff / lead	Sample Location	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tantaly in much	Kunthin in larl 6		rw 12 2 this	The The state of t	rw 13 R1	7	Sometric hall	1	Kitown sta	7	tric: Drinking Water	Relincuished By	Slock	Water Dept., CO - Pu			nort / Voltone - DAS Tre / Pink - Sam

State of Illinois Environmental Protection Agency Awards the Certificate of Approval to:

Prairie Analytical Systems, Incorporated 1210 Capital Airport Drive Springfield, IL 62707-8413

According to the Illinois Administrative Code, Title 35, Subtitle A, Chapter II, Part 186, ACCREDITATION OF LABORATORIES FOR DRINKING WATER, WASTEWATER AND HAZARDOUS WASTES ANALYSIS, the State of Illinois formally recognizes that this laboratory is technically competent to perform the environmental analyses listed on the scope of accreditation detailed below.

The laboratory agrees to perform all analyses listed on this scope of accreditation according to the Part 186 requirements and acknowledges that continued accreditation is dependent on successful ongoing compliance with the applicable requirements of Part 186. Please contact the Illinois EPA Environmental Laboratory Accreditation Program (IL ELAP) to verify the laboratory's scope of accreditation and accreditation status. Accreditation by the State of Illinois is not an endorsement or a guarantee of validity of the data generated by the laboratory.

Fluoride

Nitrite

Sulfate

FOT Name: Drinking Water, Inorganic

Method: SM2130B,18Ed Matrix Type: Potable Water Turbidity

Method: SM2320B,18Ed

Matrix Type: Potable Water

Alkalinity

Method: SM2340B,18Ed

Matrix Type: Potable Water

Hardness

Method: SM4110B,18Ed

Matrix Type: Potable Water

Chloride

Orthophosphate as P

Matrix Type: Potable Water

Method: SM4500CN-E,18Ed

Cyanide

Method: SM4500H-B,18Ed

Matrix Type: Potable Water

Hydrogen ion (pH)

Method: SM5310C,20Ed

Matrix Type: Potable Water

Total Organic Carbon (TOC)

Method: USEPA150.1

Matrix Type: Potable Water

Hydrogen ion (pH)

Method: USEPA180.1

Matrix Type: Potable Water Turbidity

Tuesday, June 20, 2017

Page 2 of 14

State of Illinois Environmental Protection Agency Awards the Certificate of Approval

Certificate No.: 004184

Method: USEPA200.7R4.4

Prairie Analytical Systems, Incorporated	
1210 Capital Airport Drive	
Springfield, IL 62707-8413	
FOT Name: Drinking Water, Inorganic	

Matrix Type: Potable Water	
Aluminum	Arsenic
Barium	Beryllium
Cadmium	Calcium
Chromium	Copper
Hardness (calc.)	Iron
Magnesium	Manganese
Nickel	Silver
Sodium	Zinc
Method: USEPA200.8R5.4	
Matrix Type: Potable Water	
Aluminum	Antimony
Arsenic	Barium
Beryllium	Cadmium
Chromium	Copper
Lead	Manganese
Mercury	Molybdenum
Nickel	Selenium
Silver	Thallium
Zinc	
Method: USEPA245.2	
Matrix Type: Potable Water	
Mercury	
Method: USEPA300.0R2.1	
Matrix Type: Potable Water	
Chloride	Fluoride
Nitrate	Nitrite
Orthophosphate as P	Sulfate
FOT Name: Drinking Water, Organic	
Method: USEPA524.2R4.1	
Matrix Type: Potable Water	
1,1,1-Trichloroethane	1,1,2-Trichloroethane
1,1-Dichloroethene	1,2,4-Trichlorobenzene
1,2-Dichlorobenzene	1,2-Dichloroethane
Tuesday, June 20, 2017	Page 3 of 14

State of Illinois Certificate No.: 004184 **Environmental Protection Agency** Awards the Certificate of Approval Prairie Analytical Systems, Incorporated 1210 Capital Airport Drive Springfield, IL 62707-8413 Method: USEPA524.2R4.1 FOT Name: Drinking Water, Organic Matrix Type: Potable Water 1,2-Dichloropropane Benzene 1,4-Dichlorobenzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroform cis-1,2-Dichloroethene Dichloromethane (Methylene chloride) Ethylbenzene Methyl tert-butyl ether (MTBE) Naphthalene Styrene Tetrachloroethene Toluene trans-1,2-Dichloroethene Total trihalomethanes Trichloroethylene Vinyl chloride Xylenes (total) FOT Name: Non Potable Water, Inorganic Method: SM2130B,2001 Matrix Type: NPW/SCM Turbidity Method: SM2310B,1997 Matrix Type: NPW/SCM Acidity Method: SM2320B,1997 Matrix Type: NPW Alkalinity Method: SM2340B,1997 Matrix Type: NPW Hardness Method: SM2540B,1997 Matrix Type: NPW Residue (Total) Method: SM2540C,1997 Matrix Type: NPW Residue (TDS) Method: SM2540D,1997 Matrix Type: NPW Residue (TSS) Tuesday, June 20, 2017 Page 4 of 14

State of Illinois	Certificate No.: 004184
Environmental Protection Agency	r
Awards the Certificate of Approval	
Prairie Analytical Systems, Incorporated 1210 Capital Airport Drive Springfield, IL 62707-8413	
FOT Name: Non Potable Water, Inorganic	Method: SM3500Cr-B,2009
Matrix Type: NPW/SCM	
Chromium VI	
Method: SM4110B,2000	
Matrix Type: NPW/SCM	
Bromide	Chloride
Fluoride	Nitrate
Nitrate-Nitrite (as N)	Nitrite
Orthophosphate (as P)	Sulfate
Method: SM4500CI-G,2000	
Matrix Type: NPW	
Chlorine, Total Residual	
Method: SM4500CN-E,1999	
Matrix Type: NPW	
Cyanide	
Method: SM4500H-B,2000	
Matrix Type: NPW	
Hydrogen Ion (pH)	
Method: SM4500NH3-D,1997	
Matrix Type: NPW/SCM	
Ammonia	Total Kjeldahl Nitrogen
Method: SM4500NH3-G,1997	
Matrix Type: NPW	
Ammonia	
Method: SM4500O-G,2001	
Matrix Type: NPW	
Oxygen - Dissolved	
Method: SM4500P-E,1999	
Matrix Type: NPW	
Orthophosphate (as P)	Phosphorus
Method: SM4500P-F,1999	
Matrix Type: NPW	
Orthophosphate (as P)	
Method: SM4500S2-F,2000	
Matrix Type: NPW/SCM	

Environmental Protection Agency	
Awards the Certificate of Approval	
Prairie Analytical Systems, Incorporated 1210 Capital Airport Drive Springfield, IL 62707-8413	
FOT Name: Non Potable Water, Inorganic	Method: SM4500S2-F,2000
Matrix Type: NPW/SCM	Sulfide
Method: SM5210B,2001	
Matrix Type: NPW	
Biochemical Oxygen Demand (BOD)	
Matrix Type: NPW/SCM	
Carbonaceous Biochemical Oxygen Demand (CBOI	
Method: SM5220D,1997	
Matrix Type: NPW	
Chemical Oxygen Demand (COD)	
Method: SM5310C,2000	
Matrix Type: NPW	
Total Organic Carbon (TOC)	
Method: USEPA160.4,1971	
Matrix Type: NPW	
Residue (Volatile)	
Method: USEPA1664A	
Matrix Type: NPW	
Oil and Grease	
Method: USEPA180.1R2.0,1993	
Matrix Type: NPW	
Turbidity	
Method: USEPA200.7,1994	
Matrix Type: NPW/SCM	
Aluminum	Antimony
Arsenic	Barium
Beryllium	Cadmium
Calcium	Chromium
Cobalt	Copper
Iron	Lead
Magnesium	Manganese
Molybdenum	Nickel
Potassium	Selenium
Silver	Sodium
Thallium	Tin

State of Illinois Environmental Protection Agency Awards the Certificate of Approval

Certificate No.: 004184

Awards the Certificate of Approval	
Prairie Analytical Systems, Incorporated 1210 Capital Airport Drive Springfield, IL 62707-8413	
FOT Name: Non Potable Water, Inorganic	Method: USEPA200.7,1994
Matrix Type: NPW/SCM	Titanium
Vanadium	Zinc
Method: USEPA200.8,1994	
Matrix Type: NPW/SCM	
Aluminum	Antimony
Arsenic	Barium
Beryllium	Boron
Cadmium	Calcium
Chromium	Cobalt
Copper	Iron
Lead	Magnesium
Manganese	Molybdenum
Nickel	Potassium
Selenium	Silver
Sodium	Thallium
Tin	Titanium
Vanadium	Zinc
Method: USEPA245.2,1974	
Matrix Type: NPW/SCM	
Mercury	
Method: USEPA300.0R2.1,1993	
Matrix Type: NPW	
Bromide	Chloride
Fluoride	Nitrate
Nitrate-Nitrite (as N)	Nitrite
Orthophosphate (as P)	Sulfate
Method: USEPA310.2,1974	
Matrix Type: NPW	
Alkalinity	
Method: USEPA335.4R1.0,1993	
Matrix Type: NPW/SCM	
Cyanide	
Method: USEPA350.1R2.0,1993	
Matrix Type: NPW	
Tuesday, June 20, 2017	Page 7 of 14

Sian	e of Illinois	Certificate No.:	004184
Envi	ronmental Protection Agency		
Award	is the Certificate of Approval		
Prairie 1210 C Spring	Analytical Systems, Incorporated Capital Airport Drive field, IL 62707-8413		
FOT Nar	ne: Non Potable Water, Inorganic	Method: USEPA350.1R2.0,1993	
N	Atrix Type: NPW	Ammonia	
Meth	od: USEPA365.1R2.0,1993		
N	Atrix Type: NPW		
	Orthophosphate (as P)		
Meth	od: USEPA410.4R2.0,1993		
N	Atrix Type: NPW		
	Chemical Oxygen Demand (COD)		
Meth	od: USEPA420.1,1978		
M	Aatrix Type: NPW		
	Phenolics		
Meth	od: USEPA420.4R1.0,1993		
n	Natrix Type: NPW		
	Phenolics		
FOT Na	ne: Solid and Chemical Materials, Inorganic		
Meth	iod: 1010A		
P	latrix Type: NPW/SCM		
	Ignitability		
Meth	iod: 1311		
r	Matrix Type: SCM		
	TCLP (Organic and Inorganic)		
Meth	od: 1312		
P	Matrix Type: SCM		
	Synthetic Precipitation Leaching Procedure		
Meth	nod: 6010B		
P	flatrix Type: NPW/SCM		
	Antimony	Arsenic	
	Barium	Beryllium	
	Cadmium	Calcium	
	Chromium	Cobalt	
	Copper	Iron	
	Lead	Magnesium	
	Manganese	Molybdenum	
	Nickel	Potassium	
	Selenium	Silver	

State of Illinois Environmental Protection Agency Awards the Certificate of Approval

Prairie Analytical Systems, Incorporated 1210 Capital Airport Drive Springfield, IL 62707-8413

FOT Name: Solid and Chemical Materials, Inorganic	Method: 6010B	
Matrix Type: NPW/SCM	Sodium	
Strontium	Thallium	
Tin	Titanium	
Vanadium	Zinc	
Method: 6020A		
Matrix Type: NPW/SCM		
Aluminum	Antimony	
Arsenic	Barium	
Beryllium	Boron	
Cadmium	Calcium	
Chromium	Cobalt	
Copper	Iron	
Lead	Magnesium	
Manganese	Mercury	
Molybdenum	Nickel	
Potassium	Selenium	
Silver	Sodium	
Thallium	Vanadium	
Zinc		
Method: 7196A		
Matrix Type: NPW/SCM		
Chromium VI		
Method: 7470A		
Matrix Type: NPW		
Mercury		
Method: 7471B		
Matrix Type: SCM		
Mercury		
Method: 9014		
Matrix Type: NPW/SCM		
Cyanide		
Method: 9034		
Matrix Type: NPW/SCM		
Sulfides		
Tuesday, June 20, 2017	Page 9 of 14	

Environmental Protection Agency		
Awards the Certificate of Approval		
Prairie Analytical Systems, Incorporated 1210 Capital Airport Drive Springfield, IL 62707-8413		
FOT Name: Solid and Chemical Materials, Inorganic	Method: 9040B	
Matrix Type: NPW		
Hydrogen Ion (pH)		
Method: 9040C		
Matrix Type: NPW		
Hydrogen Ion (pH)		
Method: 9045C		
Matrix Type: SCM		
Hydrogen Ion (pH)		
Method: 9045D		
Matrix Type: SCM		
Hydrogen Ion (pH)		
Method: 9056A	8	
Matrix Type: NPW/SCM		
Bromide	Chloride	
Fluoride	Nitrate	
Nitrite	Phosphate	
Sulfate		
Method: 9065		
Matrix Type: NPW/SCM		
Phenolics		
Method: 9081		
Matrix Type: NPW/SCM		
Cation-exchange Capacity		
Method: 9095A		
Matrix Type: NPW/SCM		
Paint Filter		
FOT Name: Solid and Chemical Materials, Organic		
Method: 8015B		
Matrix Type: NPW/SCM		
Gasoline range organics (GRO)		
Method: 8081A		
Matrix Type: NPW/SCM		
4,4'-DDD	4,4'-DDE	
4,4'-DDT	Aldrin	

State of Illinois Environmental Protection Agency Awards the Certificate of Approval

Prairie Analytical Systems, Incorporated 1210 Capital Airport Drive Springfield, IL 62707-8413

FOT Name: Solid and Chemical Materials, Organic	Method: 8081A
Matrix Type: NPW/SCM	alpha-BHC
alpha-Chlordane	beta-BHC
Chlordane - not otherwise specified	delta-BHC
Dieldrin	Endosulfan I
Endosulfan II	Endosulfan sulfate
Endrin	Endrin aldehyde
Endrin ketone	gamma-BHC (Lindane)
gamma-Chlordane	Heptachlor
Heptachlor epoxide	Methoxychlor
Toxaphene	
Method: 8082	
Matrix Type: NPW/SCM	
PCB-1016	PCB-1221
PCB-1232	PCB-1242
PCB-1248	PCB-1254
PCB-1260	
Method: 8260B	
Matrix Type: NPW/SCM	
1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane
1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane
1,1-Dichloroethane	1,1-Dichloroethene
1,1-Dichloropropene	1,2,3-Trichlorobenzene
1,2,3-Trichloropropane	1,2,4-Trichlorobenzene
1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane (DBCP)
1,2-Dibromoethane (EDB)	1,2-Dichlorobenzene
1,2-Dichloroethane	1,2-Dichloropropane
1,3,5-Trimethylbenzene	1,3-Dichlorobenzene
1,3-Dichloropropane	1,4-Dichlorobenzene
2,2-Dichloropropane	2-Butanone (Methyl ethyl ketone, MEK)
2-Chloroethyl vinyl ether	2-Chlorotoluene
2-Hexanone	4-Chlorotoluene
4-Methyl-2-pentanone (Methyl isobutyl ketone, MIBł	Acetone
Acetonitrile	Acrolein (Propenal)
Acrylonitrile	Benzene

Tuesday, June 20, 2017

Page 11 of 14

State of Illinois Environmental Protection Agency Awards the Certificate of Approval

Prairie Analytical Systems, Incorporated 1210 Capital Airport Drive Springfield, IL 62707-8413

FOT Name: Solid and Chemical Materials, Organic	Method: 8260B	
Matrix Type: NPW/SCM	Bromobenzene	
Bromochloromethane	Bromodichloromethane	
Bromoform	Bromomethane	
Carbon disulfide	Carbon tetrachloride	
Chlorobenzene	Chlorodibromomethane (Dibromochloromethane)	
Chloroethane	Chloroform	
Chloromethane	cis-1,2-Dichloroethene	
cis-1,3-Dichloropropene	Dichlorodifluoromethane	
Dichloromethane (Methylene chloride)	Ethylbenzene	
Isopropylbenzene	Methyl-t-butyl ether	
Naphthalene	n-Butylbenzene	
n-Propylbenzene	p-lsopropyltoluene	
sec-Butylbenzene	Styrene	
tert-Butylbenzene	Tetrachloroethene	
Toluene	trans-1,2-Dichloroethene	
trans-1,3-Dichloropropene	Trichloroethene	
Trichlorofluoromethane	Vinyl acetate	
Vinyl chloride	Xylenes (Total)	
Method: 8270C		
Matrix Type: NPW/SCM		
1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	
1,3-Dichlorobenzene	1,4-Dichlorobenzene	
2,2-Oxybis (1-chloropropane)	2,4,5-Trichlorophenol	
2,4,6-Trichlorophenol	2,4-Dichlorophenol	
2,4-Dimethylphenol	2,4-Dinitrophenol	
2,4-Dinitrotoluene (2,4-DNT)	2,6-Dinitrotoluene (2,6-DNT)	
2-Chloronaphthalene	2-Chlorophenol	
2-Methylnaphthalene	2-Methylphenol (o-Cresol)	
2-Nitroaniline	2-Nitrophenol	
3,3'-Dichlorobenzidine	3-Nitroaniline	
4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	
4-Chloro-3-methylphenol	4-Chloroaniline	
4-Chlorophenyl phenyl ether	4-Methylphenol (p-Cresol)	
4-Nitroaniline	4-Nitrophenol	
Acenaphthene	Acenaphthylene	
Tuesday, June 20, 2017	Page 12 of 14	

State of Illinois Environmental Protection Agency Awards the Certificate of Approval

Prairie Analytical Systems, Incorporated 1210 Capital Airport Drive Springfield, IL 62707-8413

FOT Name: Solid and Chemical Materials, Organic	Method: 8270C
Matrix Type: NPW/SCM	Anthracene
Benzo(a)anthracene	Benzo(a)pyrene
Benzo(b)fluoranthene	Benzo(g,h,i)perlyene
Benzo(k)fluoranthene	Bis(2-chloroethoxy) methane
Bis(2-chloroethyl) ether	Bis(2-ethylhexyl) phthalate
Butyl benzyl phthalate	Carbazole
Carbofuran (Furaden)	Chlorobenzilate
Chrysene	Dibenz(a,h)anthracene
Dibenzofuran	Diethyl phthalate
Dimethyl phthalate	Di-n-butyl phthalate
Di-n-octyl phthalate	Fluoranthene
Fluorene	Hexachlorobenzene
Hexachlorobutadiene	Hexachlorocyclopentadiene
Hexachloroethane	Indeno(1,2,3-cd) pyrene
Isophorone	Naphthalene
Nitrobenzene	N-Nitrosodimethylamine
N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine
o-Cresol (2-Methylphenol)	p-Cresol (4-Methylphenol)
Pentachlorophenol	Phenanthrene
Phenol	Pyrene
Method: 8270C Mod_Farm Chemicals	
Matrix Type: NPW/SCM	
Acetochlor	Alachlor
Atrazine	Butylate
Chlorpyrifos	Cyanazine
EPTC	Metolachlor
Metribuzin	Pendimethalin
Prometon	Simazine
Terbufos	Trifluralin
Method: 8321B	
Matrix Type: NPW/SCM	
2,4,5-T	2,4,5-TP (Silvex)
2,4-D	2,4-DB
Aldicarb (Temik)	Carbofuran (Furaden)
Tuesday, June 20, 2017	Page 13 of 14

Dalapon Dinoseb

MCPP

State of Illinois
Environmental Protection Agency
Awards the Certificate of Approval

Prairie Analytical Systems, Incorporated 1210 Capital Airport Drive Springfield, IL 62707-8413

Oxamyl

Method: 8321B FOT Name: Solid and Chemical Materials, Organic Matrix Type: NPW/SCM Dicamba MCPA

Tuesday, June 20, 2017

Page 14 of 14

Ideal Environmental Engineering, Inc.2904 Tractor LaneBloomington, Illinois 61704-9163(800) 535-0964 in Illinois(309) 828-4259Fax (309) 828-5735www.idealenvironmental.com