The Extraordinary Properties of Water

Water

• A water molecule (H₂O), is made up of three atoms --- one oxygen and two hydrogen.

Water is Polar

- In each water molecule, the <u>oxygen</u> atom attracts more than its "fair share" of <u>electrons</u>
- · The <u>oxygen</u> end "acts" <u>negative</u>
- · The <u>hydrogen</u> end "acts" <u>positive</u>
- · Causes the water to be POLAR
- However, <u>Water is neutral</u> (equal number of e- and p+) --- <u>Zero Net</u>
 <u>Charge</u>

Hydrogen Bonds Exist Between Water Molecules

Formed between a highly Electronegative atom of a polar molecule and a Hydrogen +

One hydrogen bond is weak, but many hydrogen bonds are strong

Interaction Between Water Molecules

Negative Oxygen end of one water molecule is attracted to the Positive Hydrogen end of another water molecule to form a HYDROGEN BOND

What are the Properties of Water?

Properties of Water

· At sea level, pure water boils at 100 °C and freezes at 0 °C.

 The boiling temperature of water decreases at higher elevations (lower atmospheric pressure).

· For this reason, an egg will take longer to boil at higher altitudes

Properties of Water

- · Cohesion
- · Adhesion
- · High Specific Heat
- · High Heat of Vaporization
- · Less Dense as a Solid

Cohesion

- Attraction between particles of the same substance (why water is attracted to itself)
- Results in <u>Surface tension</u> (a measure of the strength of water's surface)
- Produces a <u>surface film</u> on water that <u>allows insects to walk on the surface</u> of water

Cohesion ...

Helps insects walk across water

Adhesion

- Attraction between two different substances.
- Water will make <u>hydrogen bonds with other</u> <u>surfaces</u> such as glass, soil, plant tissues, and cotton.
- <u>Capillary action</u>—water molecules will "<u>tow"</u> each other along when in a thin glass tube.
- Example: <u>transpiration</u> process which plants and <u>trees</u> <u>remove water from the soil</u>, and paper towels soak up water.

Adhesion Causes Capillary Action

Which gives water the ability to "climb" structures

Adhesion Also Causes Water to ...

Form spheres & hold onto plant leaves

Attach to a silken spider web

High Specific Heat

 Amount of heat needed to raise or lower 1g of a substance 1° C.

Water resists temperature change,
 both for heating and cooling.

 Water can absorb or release large amounts of heat energy with little change in actual temperature.

High Heat of Vaporization

 Amount of energy to convert 1g or a substance from a liquid to a gas

 In order for water <u>to evaporate</u>, <u>hydrogen bonds must be broken</u>.

 As <u>water evaporates</u>, it <u>removes</u> a lot of <u>heat</u> with it.

High Heat of Vaporization

- Water's heat of <u>vaporization is 540</u>
 <u>cal/g.</u>
- In order for water to evaporate, each gram must GAIN 540 calories (temperature doesn't change --- 100°C).
- As water evaporates, it removes a lot of heat with it (cooling effect).

- Water vapor forms a kind of global "blanket" which helps to keep the Earth warm.
- Heat radiated from the sun warmed surface of the earth is

absorbed and held by the vapor.

Water is Less Dense as a Solid

- Water is less dense as a solid than as a liquid (ice floats)
- Liquid water has hydrogen bonds that are constantly being broken and reformed.
- Frozen water forms a <u>crystal-like</u> lattice whereby molecules are set at <u>fixed distances</u>.

Water is Less Dense as a Solid

·Which is ice and which is water?

Water is Less Dense as a Solid

Water Ice

Homeostasis

- Ability to <u>maintain a steady state</u> despite changing conditions
- Water is important to this process because:
 - a. Makes a good insulator
 - b. Resists temperature change
 - c. Universal solvent
 - d. Coolant
 - e. Ice protects against temperature extremes (insulates frozen lakes)

Solutions & Suspensions

- · Water is usually part of a mixture.
- There are two types of mixtures:
 - Solutions
 - Suspensions

Solution

- Ionic compounds disperse as <u>ions</u> in water
- Evenly distributed
- · SOLUTE
 - Substance that is being dissolved
- · SOLVENT
 - Substance into which the solute dissolves

Solution

Suspensions

- Substances that don't dissolve but separate into tiny pieces.
- Water keeps the pieces suspended so they don't settle out.

Acids, Bases and pH

One <u>water molecule</u> in 550 million naturally <u>dissociates into</u> a Hydrogen Ion (H+) and a Hydroxide Ion (OH-)

The pH Scale

- Indicates the <u>concentration of H⁺</u> <u>ions</u>
- Ranges from <u>0 14</u>
- · pH of 7 is neutral
- pH O up to 7 is acid ... H
- · pH above 7 14 is basic... OH
- Each pH unit represents a factor of <u>10X</u> change in concentration
- pH 3 is $10 \times 10 \times 10$ (1000) stronger than a pH of 6

Acids

- Strong
 Acids
 have a pH
 of 1-3
- Produce
 lots of
 H* ions

Bases

- Strong
 Bases have
 a pH of 11
 to 14
- Contain

 lots of OH ions and
 fewer H+
 ions

Buffers

- Weak acids or bases that react with strong acids or bases to prevent sharp, sudden changes in pH (neutralization).
- Produced naturally by the body to maintain homeostasis

Weak Acid

Weak Base