Basic Structure of a Cell

Review Facts About Living Things

What Are the Main Characteristics of organisms?

- 1. Made of CELLS
- 2. Require ENERGY (food)
- 3. REPRODUCE (species)
- 4. Maintain HOMEOSTASIS
- 5. ORGANIZED
- 6. RESPOND to environment
- 7. GROW and DEVELOP
- 8. EXCHANGE materials with surroundings (water, wastes, gases)

LEVELS OF ORGANIZATION

Nonliving Levels:

- 1. ATOM (element)
- 2. MOLECULE (compounds like carbohydrates & proteins)
- 3. ORGANELLES (nucleus, ER, Golgi ...)

LEVELS OF ORGANIZATION

Living Levels:

- 1. CELL (makes up ALL organisms)
- 2. TISSUE (cells working together
- 3. ORGAN (heart, brain, stomach ...)
- 4. ORGAN SYSTEMS (respiratory, circulatory ...)
- 5. ORGANISM copyright cmassengale

LEVELS OF ORGANIZATION

Living Levels continued:

- 1. POPULATION (one species in an area)
- 2. COMMUNITY (several populations in an area
- 3. ECOSYSTEM (forest, prairie ...)
- 4. BIOME (Tundra, Tropical Rain forest...)
- 5. BIOSPHERE (all living and nonliving things on Earth)

History of Cells & the Cell Theory

Cell
Specialization
Cell

First to View Cells

· In 1665, Robert Hooke used a microscope to examine a thin slice of cork (dead plant cell walls)

What he saw
 looked like small
 boxes

First to View Cells

- Hooke is responsible for naming cells
- · Hooke called them "CELLS" because they looked like the small rooms that monks lived in called Cells

Anton van Leeuwenhoek

- In 1673, Leeuwenhoek (a Dutch microscope maker), was first to view organism (living things)
- · Leeuwenhoek used a simple, handheld microscope to view pond water & scrapings from his teeth

copyright cmassengale

Beginning of the Cell Theory

- In 1838, a
 German botanist
 named Matthias
 Schleiden
 concluded that all
 plants were made
 of cells
- Schleiden is a cofounder of the cell theory

Beginning of the Cell Theory

· In 1839, a
German zoologist
named Theodore
Schwann
concluded that
all animals were
made of cells

 Schwann also cofounded the cell theory

Beginning of the Cell Theory

- In 1855, a German medical doctor named Rudolph Virchow observed, under the microscope, cells dividing
- He reasoned that all cells come from other pre-existing cells by cell division

CELL THEORY

- · All living things are made of cells
- Cells are the basic unit of structure and function in an organism (basic unit of life)
- · Cells come from the reproduction of existing cells (cell division)

Discoveries Since the Cell Theory

ENDOSYMBIOTIC THEORY

copyright cmassengale

• In 1970, American biologist, Lynn Margulis, provided evidence that some organelles within cells were at one time free living cells themselves

Supporting evidence included organelles with their own DNA

· Chloroplast and Mitochondria

Cell Size and Types

- · Cells, the basic units of organisms, can only be observed under microscope
- · Three Basic types of cells include:

Plant Cell copyright cmassengale

Bacterial Cell

Number of Cells

Although ALL living things are made of cells, organisms may be:

- · Unicellular composed of one cell
- Multicellular composed of many cells that may organize into tissues, etc.

CELL SIZE

Typical cells range from 5 - 50 micrometers (microns)

Which Cell Type is Larger?

Plant cell > Animal cell > bacteria

How Big is a Micron (μ) ?

1 cm = 10,000 microns

1'' = 25,000 microns

Multicellular Organisms

 Cells in multicellular organisms often specialize (take on different shapes & functions)

Cell Specialization

- · Cells in a multicellular organism become specialized by turning different genes on and off
- · This is known as DIFFERENTIATION

Specialized Animal Cells

Muscle cells

Red blood cells

Cheek cells

Specialized Plant cells

Guard Cells

Pollen

Xylem cells

Organization Levels of Life

Atoms to Organisms

Nonliving Levels

MOLECULES

-> ORGANELLES

Living Levels

CELLS - life starts here

TISSUES - Similar cells

working together

copyright cmassengare

More Living Levels

ORGANS

→ ORGAN → SYSTEMS

→ ORGANISM

Different tissues working together

Different organs working together copyright cmassengale

Simple or Complex Cells

Prokaryotes - The first Cells

- Cells that lack a nucleus or membrane-bound organelles
- · Includes bacteria
- · Simplest type of cell
- · Single, circular chromosome

Prokaryotes

- Nucleoid region (center) contains the DNA
- Surrounded by cell membrane & cell wall (peptidoglycan)
- Contain ribosomes

 (no membrane) in
 their cytoplasm to
 make proteins

Eukaryotes

- Cells that HAVE a nucleus and membranebound organelles
- Includes protists, fungi, plants, and animals
- More complex type of cells

Eukaryotic Cell

Contain 3 basic cell structures:

- Nucleus
- · Cell Membrane
- · Cytoplasm with organelles

Two Main Types of Eukaryotic Cells

Plant Cell

Animal Cell

Organelles

Organelles

- · Very small (Microscopic)
- Perform various functions for a cell
- · Found in the cytoplasm
- May or may not be membranebound

Animal Cell Organelles

Plant Cell Organelles

Cell or Plasma Membrane

- Composed of double layer of phospholipids and proteins
- Surrounds outside of ALL cells
- Controls what enters or leaves the cell
- Living layer

Phospholipids

- Heads contain glycerol & phosphate and are hydrophilic (attract water)
- Tails are made of fatty acids and are hydrophobic (repel water)
- Make up a bilayer where tails point inward toward each other
- · Can move laterally to allow small molecules (O₂, CO₂, & H₂O to enter)

The Cell Membrane is Fluid

Molecules in cell membranes are constantly moving and changing

Cell Membrane Proteins

- Proteins help move large molecules or aid in cell recognition
- Peripheral proteins are attached on the surface (inner or outer)
- Integral proteins are embedded completely through the membrane

GLYCOPROTEINS

Glycoproteins have carbohydrate tails to act as markers for cell recognition

copyright cmassengale

Cell Membrane in Plants

- · Lies immediately against the cell wall in plant cells
- · Pushes out against the cell wall to maintain cell shape

Cell Wall

Cell wall

Nonliving layer

· Found in plants, fungi, & bacteria

Made of cellulose in plants

 Made of peptidoglycan in bacteria

· Made of chitin in Fungi

Cell Wall

- Supports and protects cell
- Found outside of the cell membrane

Cytoplasm of a Cell

cytoplasm

- Jelly-like substance enclosed by cell membrane
- Provides a medium for chemical reactions to take
 place

More on Cytoplasm

cytoplasm

Contains organelles
to carry out
specific jobs
Found in ALL cells

The Control Organelle - Nucleus

- · Controls the normal activities of the cell
- · Contains the DNA in chromosomes
- Bounded by a nuclear envelope (membrane) with pores
- · Usually the largest organelle copyright cmassengale

More on the Nucleus

Nucleus

- Each cell has fixed number of chromosomes that carry genes
- · Genes control cell characteristics

Nuclear Envelope

- Double membrane surrounding nucleus
- · Also called nuclear membrane
- Contains nuclear pores for materials to enter & leave nucleus
- · Connected to the rough ER

Inside the Nucleus -

The genetic material (DNA) is found

DNA is spread out
And appears as
CHROMATIN
in non-dividing cells

DNA is condensed & wrapped around proteins forming as CHROMOSOMES in dividing cells

What Does DNA do?

DNA is the hereditary material of the cell

Genes that make up the DNA molecule code for different proteins

Nucleolus

- · Inside nucleus
- Cell may have 1
 to 3 nucleoli
- Disappears when cell divides
- Makes ribosomes
 that make
 proteins

Cytoskeleton

 Helps cell maintain cell shape

 Also help move organelles around

Made of proteins

 Microfilaments are threadlike & made of ACTIN

 Microtubules are tubelike & made of TUBULIN

Centrioles

- Found only in animal cells
- Paired structures near nucleus
- Made of bundle of microtubules
- Appear during cell division forming mitotic spindle
- Help to pull chromosome pairs apart to opposite ends of the cell

Centrioles & the Mitotic Spindle

Made of MICROTUBULES (Tubulin)

Mitochondrion (plural = mitochondria)

- · "Powerhouse" of the cell
- Generate cellular energy (ATP)
- More active cells like muscle cells have MORE mitochondria
- Both plants & animal cells have mitochondria
- Site of CELLULAR RESPIRATION (burning glucose)

MITOCHONDRIA

Mitochondria Inner Structure

Surrounded by a DOUBLE membrane

Has its own DNA

Folded inner membrane called CRISTAE (increases surface area for more chemical Reactions)

Interior called MATRIX

Interesting Fact

· Mitochondria Come from cytoplasm in the EGG cell during fertilization

Therefore ...

· You inherit your mitochondria from your copyright cmassengale other!

Cell Powerhouse

Mitochondrian (mitochondria)

Rod shape

What do mitochondria do?

"Power plant" of the cell

Burns glucose to release energy (ATP)

₽-₽-₽

Stores energy as ATP

Endoplasmic Reticulum - ER

- Network of hollow membrane tubules
- Connects to nuclear envelope & cell membrane

· Functions in Synthesis of cell products &

Transport

Rough Endoplasmic Reticulum (Rough ER)

- Has ribosomes on its surface
- Makes membrane proteins and proteins for EXPORT out of cell

Rough Endoplasmic Reticulum (Rough ER)

- Proteins are made by ribosomes on ER surface
- They are then threaded into the interior of the Rough ER to be modified and transported

Smooth Endoplasmic Reticulum

- Smooth ER lacks ribosomes on its surface
- Is attached to the ends of rough ER
- Makes cell products that are USED INSIDE the cell

Functions of the Smooth ER

- Makes membrane lipids (steroids)
- Regulates calcium (muscle cells)
- Destroys toxic substances(Liver)

Endomembrane System

Includes nuclear membrane connected to ER connected to cell membrane (transport)

copyright cmassengale

Ribosomes

- · Made of PROTEINS and rRNA
- · "Protein factories" for cell
- · Join amino acids to make proteins
- · Process called protein synthesis

Ribosomes

Rough Endoplasmic Reticulum

Can be attached to Rough ER

OR

Be free (unattached) in the cytoplasm

Golgi Bodies

- Stacks of flattened sacs
- Have a shipping side (trans face) and receiving side (cis face)
- Receive proteins made by ER
- Transport vesicles with modified proteins pinch off the ends

Transport vesicle

Golgi Bodies

Look like a stack of pancakes

Modify, sort, & package molecules from ER for storage OR transport out of cell

Golgi

Golgi Animation

Materials are transported from Rough ER to Golgi to the cell membrane by VESICLES copyright cmassengale

Lysosomes

- Contain digestive enzymes
- Break down food, bacteria, and worn out cell parts for cells
- Programmed for cell death (AUTOLYSIS)
- Lyse (break open) & release enzymes to break down & recycle cell parts)

Lysosome Digestion

- Cells take in food by phagocytosis
- Lysosomes
 digest the food
 & get rid of
 wastes

Cilia & Flagella

- Made of protein tubes called microtubules
- Microtubules arranged
 (9 + 2 arrangement)
- Function in moving cells, in moving fluids, or in small particles across the cell surface

Cilia & Flagella

- Cilia are shorter and more numerous on cells
- Flagella are longer and fewer (usually 1-3) on cells

Cell Movement with Cilia & Flagella

Cilia Moving Away Dust Particles from the Lungs Respiratory System

Vacuoles

- Fluid filled sacks for storage
- · Small or absent in animal cells
- Plant cells have a large Central Vacuole
- No vacuoles in bacterial cells

Vacuoles

- In plants, they store
 Cell Sap
- Includes storage of sugars, proteins, minerals, lipids, wastes, salts, water, and enzymes

Contractile Vacuole

- Found in unicellular protists like paramecia
- Regulate water intake by pumping out excess (homeostasis)
- Keeps the cell from lysing (bursting)

Contractile vacuole animation

Chloroplasts

- Found only in producers (organisms containing chlorophyll)
- Use energy from sunlight to make own food (glucose)
- Energy from sun stored in the Chemical Bonds of Sugars

Chloroplasts

- Surrounded by DOUBLE membrane
- · Outer membrane smooth
- Inner membrane modified into sacs called Thylakoids
- Thylakoids in stacks called Grana & interconnected
- Stroma gel like material surrounding thylakoids

Chloroplasts

- Contains its own DNA
- Contains enzymes
 & pigments for
 Photosynthesis
- Never in animal or bacterial cells
- Photosynthesis food making process

Cell Size

Question:

Are the cells in an elephant bigger, smaller, or about the same size as those in a mouse?

Factors Affecting Cell Size

- Surface area (plasma membrane surface) is determined by multiplying length times width (L x W)
- Volume of a cell is determined by multiplying length times width times height (L x W x H)
- Therefore, Volume increases FASTER than the surface area

Cell Size

- · When the surface area is no longer great enough to get rid of all the wastes and to get in enough food and water, then the cell must divide
- Therefore, the cells of an organism are close in size

Cell Size

Question:

Are the cells in an elephant bigger, smaller, or about the same size as those in a mouse?

About the same size, but ...

The elephant has MANY MORE cells than a mouse!

