The Plasma Membrane -

Gateway to the Cell copyright cmassengale

Photograph of a Cell Membrane

Cell Membrane

The cell membrane is flexible_and allows a unicellular organism to move

- <u>Balanced internal condition of</u> cells
- Also <u>called equilibrium</u>
- <u>Maintained by plasma membrane</u> controlling what enters & leaves the cell

Functions of Cell Membrane

- ✓ Protective <u>barrier</u>
- <u>Regulate transport</u> in & out of cell (selectively permeable)
- ✓ Allow <u>cell recognition</u>
- <u>Provide anchoring sites for filaments</u> of <u>cytoskeleton</u>

✓ <u>Contains the cytoplasm (fluid in cell)</u>

Structure of Cell Membrane

FLUID MOSAIC MODEL

<u>FLUID</u>- because phospholipids and proteins can <u>move</u> within the layer, like it's a liquid.

<u>MOSAIC- because</u> of <u>pattern made by</u> the <u>scattered proteins</u> when the membrane is seen from above.

<u>Phospholipids</u>

Has 2 fatty acid chains that are nonpolar

<u>Head is polar</u> <u>has a -PO₄</u> <u>group and</u> <u>glycerol</u>

<u>Polar heads- hydrophilic</u> "water loving"

<u>Nonpolar tails- hydrophobic "water fearing"</u>

<u>Makes the membrane "Selective"</u> about what can move across, called a <u>Semipermeable Membrane</u>

(b) Phospholipid bilayer

Small molecules like O_2 , CO_2 , H_2O things that are <u>Hydrophobic</u> (soluble in lipids) can pass through the membrane easily

<u>Ions, hydrophilic molecules bigger than water,</u> <u>and large molecules like proteins DO NOT move</u> through the membrane <u>on their own.</u>

<u>Types of Transport</u> Across Cell <u>Membranes</u>

<u>Three Forms of Transport</u> Across the Membrane

Materials move down their concentration gradient through the phospholipid bilayer.

The passage of materials is aided both by a concentration gradient and by attansport protein.

Molecules again move through a transport protein, but now energy must be expended to move them against their concentration gradient.

• <u>Requires NO</u>

energy

- <u>Molecules</u>
 - move from
 - area of <u>HIGH</u>

<u>to LOW</u>

concentration

copyright cmassengale

DIFFUSION

Diffusion is PASSIVE which means <u>no energy is</u> <u>used</u> to make the molecules move.

Diffusion of Liquids

(a) Dye is dropped in

(b) Diffusion begins

(c) Dye is evenly distributed

Diffusion through a Membrane

Solute moves <u>DOWN concentration gradient</u> (HIGH to LOW)

Diffusion of H₂O Across A Membrane

High H₂O potential Low solute concentration

Low H₂O potential High solute concentration

- <u>Water Channels</u>
- Protein pores used during OSMOSIS

WATER MOLECULES

Cell in <u>Isotonic Solution</u>

Cell in <u>Hypotonic</u> Solution

What is the direction of water movement? copyright cmassengale

Cell in <u>Hypertonic</u> Solution

What is the direction of water movement?

Cells in Solutions

TABLE 5-1Direction of Osmosis

Condition	Net movement of water	
External solution is hypotonic to cytosol	into the cell	$H_2O \longrightarrow H_2O$
External solution is hypertonic to cytosol	out of the cell	H_2O \longrightarrow H_2O
External solution is isotonic to cytosol	none	

Isotonic Solution

<u>Hypotonic</u> <u>Solution</u>

<u>Hypertonic</u> <u>Solution</u>

What Happens to Blood Cells?

STRUCTURES AND FUNCTIONS The drawings below show the appearance of a red blood cell and a plant cell in isotonic, hypotonic, and hypertonic environments. Label each environment in the spaces provided.

RED BLOOD CELL

PLANT CELL

copyright cmassengale

Three Forms of Transport Across the Membrane

Materials move down their concentration gradient through the phospholipid bilayer.

The passage of materials is aided both by a concentration gradient and by attansport protein. **Active transport**

Molecules again move through a transport protein, but now energy must be expended to move them against their concentration gradient.

facilitated diffusion

The passage of materials is aided both by a concentration gradient and by a transport protein.

Passive Transport Facilitated diffusion Doesn't require energy Uses transport proteins to move high to low concentration

<u>Examples: Glucose or</u> <u>amino acids</u>

<u>Proteins Are Critical to</u> <u>Membrane Function</u>

Types of Transport Proteins

<u>Channel proteins</u> are <u>stuck in</u> the cell <u>membrane</u> & have a <u>pore for</u> materials to cross

• <u>Carrier proteins</u> can <u>change shape</u> to move material from one side of the membrane to the other

Molecules will <u>randomly</u> move through the <u>pores in Channel Proteins</u>.

<u>Some Carrier proteins do not go all</u> the way through the membrane.

 They bond to and drag molecules through the lipid bilayer and release them on the opposite side.

Carrier Proteins

• <u>Other carrier</u>

<u>proteins change</u>

<u>shape</u> to move materials across the cell membrane

Three Forms of Transport Across the Membrane

Materials move down their concentration gradient through the phospholipid bilayer.

The passage of materials is aided both by a concentration gradient and by attansport protein. **Active transport**

Molecules again move through a transport protein, but now energy must be expended to move them against their concentration gradient.

Active transport

Molecules again move through a transport protein, but now energy must be expended to move them against their concentration gradient.

<u>Active Transport</u>

Requires energy or
ATP

*<u>Moves materials from</u> LOW to HIGH concentration

*****AGAINST
concentration gradient

Active transport

Active transport Examples: Pumping Na⁺ (sodium ions) out and K⁺ (potassium ions) in against strong concentration gradients.

Called Na+-K+ Pump

Sodium-Potassium Pump

<u>3 Na+ pumped out for every 2 K+</u> pumped <u>in;</u> creates a membrane potential

Moving the "Big Stuff"

(a) Exocytosis

Molecules are <u>moved out</u> of the cell <u>by vesicles</u> that fuse with the plasma membrane.

Moving the "Big Stuff" Large molecules move materials into the cell by one of <u>three forms of endocytosis</u>.

copyright cmassengale

(a) Pinocytosis

<u>Takes in dissolved molecules</u> as a vesicle.

Called <u>"Cell Drinking"</u>

Example of Pinocytosis

pinocytic vesicles forming

mature transport vesicle

Copyright cmassengale Transport across a capillary cell (blue).

Receptor-Mediated Endocytosis

Some integral proteins have receptors <u>on their surface to recognize & take in</u> hormones, cholesterol, etc. 45

Receptor-Mediated Endocytosis

<u>Endocytosis – Phagocytosis</u>

Used to <u>engulf large particles</u> such as <u>food</u>, <u>bacteria</u>, etc. into vesicles

<u>Called "Cell Eating"</u>

<u>Opposite of endocytosis Big molecules</u> that are made in the cell are <u>released</u> through the cell membrane.

Inside Cell copyright cmassengale Cell environment ⁵⁰